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Abstract

Mobile, touch-screen devices are increasingly ubiquitous in children’s lives. The extensive

use of such devices provides present an exciting opportunity for data collection. We

describe a simple method for creating cross-platform, interactive tablet experiments using

open web-based resources. We illustrate this method by collecting data from children ages

1–5 years in a word-recognition paradigm using three different techniques: tablets,

eye-tracking, and an in-person storybook paradigm. Both accuracy and reaction time data

from the tablet compared favorably to the other methods. Tablets should be considered as

a viable method for collecting low-cost, well-controlled developmental data.
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Introduction

Since Apple debuted the iPad in 2010, the ubiquity of personal tablets—interactive,

touchscreen-based computing devices that are typically larger than a phone but smaller

than a laptop—has skyrocketed. By 2014, an estimated 71% of families with young

children in the United States owned a “smart” mobile device, with 55% of households

owning tablets (27% of lower-income families and 63% of higher-income families); tablets

were estimated to constitute 13% of children’s overall screen time from ages 0–8 (Rideout,

2014). Accordingly, the market for downloadable applications targeted for children has

increased dramatically. In one estimate, applications targeted towards children were 72%

of the top selling items in the iTunes store, and over 80% in the Education category

(Shuler, Levine, & Ree, 2012). The explosion in popularity of touchscreen devices has

created a surge of interest in the potential for using these devices as scientific tools.

Unlike in the case of traditional behavioral experiments and eye-tracking measures,

there are relatively few resources to help labs implement tablet experiments. In addition,

the reliability of data gathered from tablet experiments from young children has not been

tested. The goal of the current article is to address these challenges. We begin by briefly

reviewing research on the use of tablets with children. We then describe a method for

creating tablet-based experiments using standard, freely-available web-development tools.

Although this method requires some programming experience, it is significantly easier

than developing tablet-native applications (e.g., apps that can be downloaded from the

Apple App Store or Google Play platforms and are specific to a particular device). We

report data on an experiment comparing word-recognition accuracy and reaction time

across tablet, eye-tracking, and behavioral data collection. Our findings suggest that the

tablet platform is an engaging method for data collection that, when used appropriately,

can yield reliable estimates of accuracy and reaction time from young children.
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Prior Work on Using Tablets with Children

Although tablets are becoming increasingly common in research, relatively little

published work has compared them directly with other data collection modalities. One

exception to this statement, however, is the use of tablets in standardized psychological

instruments. Publishers are increasingly creating tablet-specific versions of

paper-and-pencil assessments; at time of writing, a number of instruments—including the

WAIS (Wechsler, 2008), CELF (Wiig, Secord, & Semel, 2004), PPVT (Dunn & Dunn,

2007), and many others—-are available from commercial publishers. The tablet modality

assists in standardizing instructions and facilitates response logging, both with minimal

changes to the basic instrument. Thus, it seems clear that tablets can be used effectively

for data collection with preschool-aged and older children in relatively straightforward and

standardized paradigms.

For younger children, the primary focus of research on tablets has not been on their

use as a data-collection platform but rather the evaluation of their educational potential.

The starting point for investigations of learning from tablets is the suggestion that

children learn less from passive video viewing than they do from live demonstrations, a

phenomenon known as the “video deficit” effect (e.g. Anderson & Pempek, 2005;

DeLoache et al., 2010). The experiences offered by touch-screen devices may be distinct

from passive viewing of television and computer screens, however. For example, Zack,

Barr, Gerhardstein, Dickerson, and Meltzoff (2009) found that 15-month-olds were able to

transfer knowledge about an object learned via a touch-screen to a physical toy. Practice

with interactive games may also benefit attention and motor control (Bavelier, Green, &

Dye, 2010), and more generally screen time with tablets can promote independence,

opportunities for physical closeness, and feelings of fun and accomplishment (Rvachew,

2014). The contingent feedback and individualization offered by mobile devices may thus

make them a better medium for learning and engagement than traditional view-only
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screens, and these advantages may also increase their utility for data-acquisition.

The accuracy of young children’s motor control poses a concern about their

performance using tablets. Experience likely plays a substantial role in modulating the

accuracy of tablet interactions, especially for the toddlers and early preschoolers, and

some gestures are easier than others. Aziz, Sin, Batmaz, Stone, and Chung (2014) tested

2- to 5-year-olds in Malaysia and the United Kingdom on their ability to perform the

seven most common touch gestures of iPads: tap, drag/slide, free rotate, drag and drop,

pinch, spread, and flick. By age 2, children mastered the tap and drag/slide gestures, and

by age 3, they could reliably produce all but the spread gesture. By age 4, all children

performed all of the gestures. Our experiences confirm that even 1.5 – 2-year-olds are able

to learn to tap targets without too much difficulty, though more sophisticated gestures

may be too complex for them.

While relatively little published research has made use of novel tablet-based tasks,

there is an extensive literature that has used lab-based touch screen paradigms with

children (e.g. Friend & Keplinger, 2003; Holloway & Ansari, 2008; Sage & Baldwin, 2015).

This prior literature is important for calibrating our expectations about what paradigms

may be ported successfully to tablets, but it is likely to be a conservative estimate for

several reasons. First, touch screen paradigms are often conducted with relatively

specialized equipment in a lab setting, while tablets can be used anywhere. Second, tablets

are small enough to be held by the child, and generally require small motor movements; in

contrast, touch screens are typically on a desk or mounted on a wall and may require a

full arm movement (leading to fatigue over a longer testing session). Third, the increasing

comfort and proficiency of even young children with tablets may lead them to be more

comfortable with experiments conducted in this medium, in turn leading to better data.
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Why Collect Developmental Data With Tablets?

Researchers working with young children have access to a wide variety of

experimental paradigms, ranging from behavioral forced-choice to eye-tracking and

looking time-based measures (Aslin, 2007; Gredebäck, Johnson, & von Hofsten, 2009).

Nevertheless, each of these methods has its drawbacks. Behavioral methods are flexible

and easy to implement, but they can be subject to experimenter biases, and often require

labor-intensive offline coding. In contrast, corneal-reflection eye-tracking methods are

precise and unbiased, allowing tight experimental control, but can be expensive and are

difficult to implement outside of tightly-controlled lab settings. In addition, eye-tracking

paradigms are typically very limited in length as they tend to be non-interactive (cf.

Deligianni, Senju, Gergely, & Csibra, 2011), and often result in substantial data loss due

to excessive movement, calibration issues, etc.

Tablet-based experimental paradigms can supplement both of these data collection

modalities by allowing researchers to create engaging, interactive paradigms that are low

cost but nevertheless offer some of the precision and experimental control of eye-tracking

paradigms. In the sections below, we offer five reasons why tablets may be valuable tools

for developmental research.

Diverse measures. Tablets allow the collection of many different dependent

variables, including forced-choice responding and gesture trajectories. We especially

highlight the ability to measure reaction times using tablets. Reaction times provide a

continuous, informative measure of cognitive process and have proven invaluable in both

developmental (e.g. Fernald, Pinto, Swingley, Weinbergy, & McRoberts, 1998; Marchman

& Fernald, 2008) and adult (e.g. Sternberg, 1969 et seq.) studies. Behavioral paradigms

that afford reaction time measurement for young children typically require

time-consuming offline coding. In contrast, eye-tracking paradigms yield reaction times,
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but with the tradeoff that the paradigms themselves typically have limited interactivity.

Engagement. Children across a wide range of ages enjoy tablets and are highly

motivated to explore new tablet-based tasks, allowing researchers to collect more data

from individual children. As is obvious from infants’ and young children’s interest, these

devices are extremely engaging (for further evidence, see Couse & Chen, 2010). In

addition, the use of tablet-based devices may lead children to view experiments as similar

to desirable commercial apps. Behavioral paradigms with young children often require a

“warm-up” period so that the child is comfortable interacting with an unfamiliar

experimenter; such a period can be shorter or absent to the extent that a tablet-based

paradigm requires less face-to-face interaction.

Experimental control. Studies that involve interaction with an experimenter are the

de-facto standard in cognitive development research, but such studies have as major

drawbacks that it may be difficult or impossible to ensure that experimenters are blind to

condition and hypothesis. Often hypotheses are simple enough that even “näıve” research

assistants can infer the experimental structure or the desired response. While there are

methods for avoiding such issues, the possibility of eliminating experimenter bias via

computerized stimulus presentation is an attractive method for situations where it is

possible. And even when bias is not introduced, there are significant challenges in training

a group of research assistants to implement an experimental protocol uniformly. Thus,

tablet-based experiments can alleviate concerns about bias and uniformity of experimental

presentation.

Inclusion of special populations. Tablets can be a valuable tool for working with

children who have learning or physical disabilities (e.g. Cardon, 2012; Waddington et al.,

2014; Chai, Vail, & Ayres, in press; Bertucco & Sanger, 2013). The lack of face-to-face

interaction demands make tablets especially appealing for working with children on the
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autism spectrum, who may find interactions with an unfamiliar experimenter especially

aversive.

Scale. Low cost and high accessibility make it possible to distribute tablets to

research assistants who can collect data in a wider variety of locations (though not

without concern about environmental distractions). In addition, it is in principle possible

that children could contribute data to experimental studies via experiments administered

by their parents or caregivers. It is this latter possibility that might be truly revolutionary

in terms of the scope of data collection, though there are many challenges that this sort of

data collection method would need to overcome.

Despite all of these advantages, there are significant technical issues related to app

creation that have slowed the adoption of tablet-based methods in developmental research

(as well as other limitations, which we return to below). On the technical side, creating

tablet-native apps—those that can be accessed through an Android or iOS tablet’s main

menu—requires substantial programming expertise—and worse yet, this expertise is not

transferrable across tablet platforms. Developing a native app for iOS requires

programming in Objective-C using Apple’s proprietary app development tools;

development for Android requires programming in a Java variant. In other words, either

an investigator must learn a special-purpose programming language, or a programmer

must be employed. This latter option is more common, but costs can easily run in the

tens of thousands of dollars; in this sort of scenario, making scientifically-useful changes to

an app may be undesirable because of added costs.

A Web-Based Method for Developing Tablet Experiments

In contrast to costly, special-purpose methods, here we describe an alternative

method for prototyping and collecting data on tablets. The method relies on creating the

experiment as a simple webpage and then showing this page in the tablet’s web browser.
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Figure 1. A schematic of our method of collecting tablet data using a web-based experiment.

Note that the two server functions can be executed by the same system; we have separated

them here for clarity.

This method still requires some programming experience, but much less. In our

experience, an undergraduate or graduate student with some programming practice can

modify and improve an experiment written in this ecosystem starting with the code we

provide; in contrast, developing an app from scratch requires a much more substantial

programming background.

Our method draws on open-source, freely-available tools that are relatively easy to

master compared with native app development tools. Experimental “apps” made via this

method are easily shared, modified, and ported across platforms, leading to faster

iteration and data collection. In addition, our method offers the ability to collect control

data with adult participants on Amazon Mechanical Turk (Paolacci, Chandler, &
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Ipeirotis, 2010; Crump, McDonnell, & Gureckis, 2013) or using a laptop or touch screen

computer with virtually no changes to the underlying experiment. Our method has three

components (see Figure 1):

1. A HTML/JavaScript/CSS web page, which is the core of the experiment,

2. A server-side PHP script to collect data in tabular format, and

3. A tablet device running a kiosk application to present the experiment.

We discuss each below.1

Web-based experiment. The first component of our system is a web-based

experiment created using HTML, JavaScript, and CSS. This combination is currently the

most common set of tools for the creation of interactive websites. HTML (HyperText

Markup Language) forms the framework for the static content shown on the website,

while CSS (Cascading Style Sheets) gives a consistent set of formatting options.

JavaScript then controls the interaction functionality of the website. In particular, we

make use of a JavaScript library called jQuery (http://jquery.com) that allows HTML

elements like images, layouts, text, and media to be dynamically added, subtracted, and

rearranged as participants interact with the resulting page.

It is beyond the scope of this article to provide an introduction to creating

JavaScript-based web experiments, but there are a wealth of available resources on this

topic. These resources include both psychology-specific tutorials and more general

introductions to the general HTML/JavaScript/CSS model. A sample experiment (as well

as the server side code) is provided in the version control repository for this paper at

http://github.com/langcog/tablet/ and can be viewed directly at

http://langcog.stanford.edu/tablet/tabletcentered.html. We note that

1Our work has used the Apple iPad as the primary tablet platform and we provide details that are

tailored for this platform. Nevertheless, and unlike other methods, our method is in principle portable to a

wide range of mobile devices with only very minor modifications.
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JavaScript is what is known as a “client-side” language: It is executed in the user’s

web-browser. For this reason, it can be used to collect reaction times that do not depend

on server latencies. For example, Crump et al. (2013) reproduced a number of classic

reaction-time effects from cognitive psychology using JavaScript-based experiments.

Because our system uses a similar infrastructure, reaction times gathered using our

method are similarly precise and independent of connection speed.

Finally, hosting a web-based experiment requires server space, which is often

provided by universities but can also be purchased from commercial providers. We find

that the requirements on such a server are typically not high, so the costs involved are

minimal; our current experiment runs on our university-provided web space at no cost.

Server-side data collection. The second component of our system is a simple script

that allows the experiment to save data in tabular format. Although native apps can store

information on tablets, browser-based apps such as ours cannot; thus, our method requires

that the data be saved to a separate server. Every time a participant completes the

experiment, their data is sent to this script, written in PHP (a simple scripting language

that is often used for backend web development) and hosted on a server with script

execution capabilities. The script simply appends data from the experiment to a tabular

data file. The script can be hosted on any web-accessible server that has been configured

to run executable files of this type. In practice, this will often be the same server that

hosts the experiment itself, though it need not be. Data are then retrieved by the research

from this server using SFTP (Secure File Transfer Protocol) or a similar method.

Tablet configuration. The third component of our system is an internet-connected

tablet. The requirement for internet connectivity is perhaps the most substantial

drawback of our method, relative to native apps. The tablet must either have wireless

access (e.g., from the testing location or a mobile hotspot device) or direct cellular
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connectivity. Once the tablet has access to the web, the tablet’s browser can simply be

directed to the experiment website.

A major challenge of presenting experiments in the tablet’s web browser is to ensure

that children cannot accidentally or intentionally navigate away from the experiment, exit

the browser, or change perspective (e.g. by zooming). In practice, we use two tools that

are specific for the Apple iPad for this purpose: the first is Guided Access, a mode that

disables the hardware buttons. The second is Mobile Kiosk, an app that further locks the

device into a particular view of a webpage. The combination ensures that the tablet

presents the experiment as intended. With both of these systems in place, the “look” of

the experiment is extremely similar to a native app. In future, new tools (e.g.,

http://phonegap.com) may even make it possible to compile web pages directly into

native apps.

An Experimental Test of the Reliability of Tablet Data

To test the reliability and developmental applicability of our tablet method, we

implemented a simple word-recognition paradigm based on prior eye-tracking work

(Fernald et al., 1998; Fernald, Perfors, & Marchman, 2006; Bion, Borovsky, & Fernald,

2013). We compared data from this tablet paradigm with data collected via a classic

“storybook” paradigm (e.g., photocopied pages in a three-ring binder) and with data

collected using an SMI corneal-reflection eye-tracker. We collected a cross-sectional

sample of 228 children ages 1 – 5 years who were recruited from a local children’s

museum. Full methods and procedure are given in Appendix A.

Our experimental paradigm consisted of simple two-picture displays in which

children were asked to match a word with one of the two pictures. The paradigm both

tested children’s recognition of familiar words (Familiar Word trials) and also asked them

to make “mutual exclusivity” inferences (ME Inference trials)—that a novel label refers to
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Table 1

Proportion children of children finishing all trials of the study, by age group and data

collection condition.

Age Group Tablet Eye-tracker Storybook

1-year-olds 0.44 0.29 1.00

2-year-olds 0.91 0.47 1.00

3-year-olds 1.00 0.88 1.00

4-year-olds 0.86 0.63 1.00

a novel word rather than a familiar competitor (Markman & Wachtel, 1988). We

hypothesized that familiar word recognition would be easy and fast for all but the very

youngest children in our sample, while the mutual exclusivity inference would be both

slower and more challenging. While the causes of this latter inference are still a source of

theoretical disagreement (Markman, Wasow, & Hansen, 2003; Diesendruck & Markson,

2001; Frank, Goodman, & Tenenbaum, 2009; Bion et al., 2013), ME inferences are

nevertheless highly replicable, and we predicted these inferences woud show developmental

change across our sample. We additionally added control trials where we asked about

familiar words in the context of a novel item (ME Control trials).

The primary goals of our analysis were: to compare the three data collection

modalities in their overall yield in terms of data quantity; to measure the pattern of

accuracies across trial types for each data collection condition; to compare reaction time

effects for eye-tracking and tablet conditions; and to measure the reliability of each

condition across ages. In all four of these analyses, the tablet data appeared competitive

with (and in some cases, more sensitive than) the other two modalities.
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Data yield. Children were overall enthusiastic about the experiment across data

collection modalities, though anecdotally they expressed the most enthusiasm about the

tablet. Completion rates across age groups and conditions are given in Table 1. Children

who began the storybook uniformly completed it, across age groups, likely due to the

interactive and social nature of presentation. The tablet produced high completion rates

for all groups except one-year-olds, who mostly completed half or two thirds of the trials

but not the full experiment. For the eye-tracker, one-year-olds completed a mean of 19/28

trials, with many asking to stop early before the experiment completed; two-year-olds

were somewhat better, with a mean of 25/28 trials but a substantial number ending

significantly earlier. Overall, the exciting and interactive experience of interacting with

the tablet may have made up somewhat for the mismatch between the level of the

paradigm and the competence of the younger and older children, leading to higher levels

of retention relative to the eye-tracker. Nevertheless, live presentation led unambiguously

to the highest completion rates, since the experimenter could customize the pace of the

study to each individual child.

Accuracy data. Word recognition accuracies across age groups and conditions are

shown in Figure 2. Overall, older children (three- and four-year-olds) were close to ceiling

in all trial types; but younger children’s performance varied by both trial type and data

collection condition. Data for the one-year-olds were the most variable: children were

above chance for both Familiar Word and ME Control trials in the tablet condition, while

for eye-tracker only ME control trials were above chance and for the storybook only

Familiar Word trials were above chance. The tablet also revealed lower performance in the

ME inference trials for the two-year-olds, in contrast with the other two methods. In sum,

we found that accuracy data from the tablet revealed a sensible pattern of

inferences—greater difficulty in ME inference trials than familiar word trials, combined

with developmental change—and did so with at least the sensitivity of the comparison
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Figure 2. Accuracy in our word recognition task, plotted by age group. Facets show different

data collection modalities and trial types (ME refers to mutual exclusivity; see text for more

details). Dashed line shows chance performance. Error bars show 95% confidence intervals,

computed by non-parametric bootstrap.

modalities.

Reaction time data. Reaction times for the eye-tracker and tablet conditions are

shown in Figure 3 (see Appendix A for more details of data analysis). While for both

conditions, the primary trend was a decrease in reaction time for older children, several

other patterns were also visible. First, reaction times for the tablet were several times

longer than those for the eye-tracker, consistent with the more complex motor task of

tapping a picture compared with making a saccade with the eyes. Second, the tablet but

not the eye-tracker revealed slower reaction times for ME inference trials for the two-,

three-, and four-year-olds, a pattern that had been observed in young children in a more
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Figure 3. Reaction times in our word recognition task, plotted by age group and trial type,

with panels showing eye-tracker and tablet data (note different vertical scales). Error bars

show 95% confidence intervals, computed by non-parametric bootstrap.

age-specific and substantially longer eye-tracking paradigm (Bion et al., 2013). One

potential reason for this lack of sensitivity comes from the fact that two-alternative

eye-tracking paradigms only yield reaction times for half of trials (because no reaction

time is computed on trials where the participant begins the trial looking at the target;

Fernald, Zangl, Portillo, & Marchman, 2008). In contrast, every trial on a tablet yields a

reaction time; see Table 2 for the number of RT trials for each condition and age group.

In sum, in a short paradigm of this type, the tablet was more successful in reproducing a

previously-documented reaction-time effect.

Reliability. Group-level developmental differences above do not necessarily signal a

measure with high reliability. To measure reliability differences directly, we computed

Cronbach’s α, a standard statistic that quantifies the reliability of a set of measurements

(Santos, 1999). For simplicity, we selected all of the trials containing familiar words (both
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Table 2

Standardized Reliability Coefficients (Cronbach’s α) for accuracy and reaction time by age

group, along with the mean number of trials for each.

Age Condition M Trials (acc) αacc M Trials (RT) αRT

1-year-olds Eye-tracker 7.65 -0.98 4.47 0.88

Storybook 13.00 0.77

Tablet 11.78 0.45 8.50 0.72

2-year-olds Eye-tracker 11.61 0.74 5.72 0.25

Storybook 13.00 0.69

Tablet 16.05 0.64 14.77 0.69

3-year-olds Eye-tracker 12.88 0.58 6.12 0.60

Storybook 13.00 0.58

Tablet 15.83 0.06 15.54 0.59

4-year-olds Eye-tracker 11.25 0.33 7.12 0.54

Storybook 13.00 -0.11

Tablet 15.45 0.47 15.09 0.77

Familiar Word and ME Control trials) and computed a reliability coefficient for each age

group and condition, for both reaction times and accuracies. Reliabilities are shown in

Table 2.

Reliabilities were generally acceptable, with a few exceptions. First, the reliability of

accuracies declined with age across conditions, because of ceiling effects: three- and

four-year-olds made essentially no errors that distinguished between individuals. Second,

the eye-tracker paradigm we used yielded only a limited amount of data for the youngest
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children. Because of the limited number of trials, reliability numbers for one-year-olds

were noisy and we interpret these with caution. For two-year-olds, the age group for which

this paradigm was most diagnostic (e.g., there were no floor or ceiling effects), the tablet

yielded the best reliabilities. In sum, though there was substantial overall variability, the

tablet was competitive in reliability with both eye-tracking and storybook methods.

Limitations of Tablets

The evidence presented above suggests that the tablet-based data collection

replicates behavioral patterns observed in other modalities with comparable reliability for

young children. There are nevertheless a number of limitations, both to our method and

to the use of tablets more generally.

In our view, the specific web-based method we presented here has three primary

limitations. First, it requires internet connectivity. For experiments in the field or in

public places, this requirement may mean that other techniques are more appropriate.

Second, it relies on a web-based development ecosystem that includes server-side

technologies like PHP and client-side technologies including HTML, CSS, and JavaScript.

While these open tools are well-documented and relatively easy to master, setting up

these experiments nevertheless requires some technical orientation. If a lab is already

hiring a programmer, it might be appropriate to build a native app rather than a

web-based one, as we have specified here. Third, there are cases where having a robust,

native app might lead to better performance, especially when an experiment requires

extensive media or animation, use of the tablet’s camera, or large-scale data transfer. For

these reasons, data collection with a native app may be better suited for some projects.

Tablets more generally also have a number of limitations that make them suitable

for many but not all data-collection opportunities. Below we consider three classes of

limitations: participant variability in experience with tablets, limitations of measurement,



Tablet-based Data Collection 19

and limitations associated with the novelty of the method.

Limitations due to children’s prior experience. Performance while interacting with a

tablet depends to some degree on children’s prior experience with the tablet. Children

who have prior experience may be better practiced at the motor skills necessary for

indicating their responses. Thus, if children have not interacted with a tablet before, care

must be taken to familiarize them with the device prior to data collection. There may also

be population-level differences in experience with tablets, making cross-population

comparisons of data collected with tablets potentially difficult.

Limitations due to measurement issues. There are a number of limitations

associated with measurement when using a tablet for data collection. Reaction time

measurements on the tablet appear reliable in the data we collected, but validation of the

precision of reaction time recording will require more substantial technical efforts (cf.

Crump et al., 2013). In particular, it is likely that the precision of reaction times will vary

somewhat from device to device, perhaps making tablets unsuited for paradigms which

yield small time differences and which require very fast reactions. More generally,

although eye-tracking did not yield more reliable data in our comparison, for the youngest

children, it is likely that well-tailored eye-tracking experiments will yield more reliable

measurements (Fernald et al., 2006). Regardless of modality, the more closely an

experiment is tailored to appropriate developmental population, the more likely it will be

to yield interpretable data.

Limitations due to methodological novelty. Because data collection with a tablet is a

relatively new method, there are several limitations associated with its novelty. One issue

is that the length or sophistication of the paradigms that can be implemented on tablets is

still unknown. Another is related to ethical concerns of electronic data collection. While

storage and transmission of fully-anonymized data on our web server has been approved
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by our institutional review board, researchers should consult with their local IRBs to

understand the issues that can arise in electronic data collection. We recommend that

researchers never collect names or other identifying information in their tablet

apps—instead, such information should be stored separately and more securely, if at all.

Finally, tablet-based experiments in general require some technical expertise to implement

(either as a web-based or native app) and hence can be slower for initial piloting than

traditional behavioral methods. While these features of the tablet are limiting, they may

be mitigated as tablet-based data collection becomes more widely used.

In sum, tablets are a powerful tool, but they are not suitable for every study; care

should be taken to consider these limitations prior to beginning paradigm development.

Conclusions

We presented a simple method for creating tablet “apps” that allows experimenters

to create basic websites and use these websites to collect data. This method is

substantially easier and more flexible than tablet-native app development, which can be

costly and time-consuming. In addition, our method allows cross-platform compatibility

and easy sharing for the resulting experiments. We showed in a simple word recognition

experiment that this method yields reliable reaction time and accuracy data for young

children and compares favorably to two other standard data collection modalities. Data

collection using tablets thus has the potential to supplement—and perhaps even

supplant—many behavioral methods currently in use.

Mobile and tablet-based computers are becoming increasingly commonplace in

children’s experience. Children play with their parents’ and their own devices, and these

devices are used for education, reading, games, and video chat with friends and relatives.

Many important developmental issues are raised by this ubiquity, and more research must

be done to determine how, when, and what children can learn from interactive media.
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Nevertheless, the opportunity posed by such devices for developmental psychologists is

immense.
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Appendix A: Experimental Details

Methods

Participants. We recruited a sample of 228 children ages 1–4 years from the floor of

Children’s Discovery Museum of San Jose. Demographics for these participants are shown

in Table 3. A number of additional children in the target age range were recruited but

excluded from the sample for the following reasons: parent-reported English exposure less

than our pre-specified criterion of 75% (48), parent interference (12), non-compliance or

difficulty with the experimental procedure (7), experimenter error or technical issues (2),

and self-reported developmental disability (2). Parent interference was spread evenly

across data collection conditions (4 in each). Of the non-compliant children, five were in

the storybook condition, and two were in the tablet condition and could not complete the

initial training phase.

Stimuli. Visual stimuli consisted of images of sixteen familiar and eight novel

objects. All were presented as cropped images on a gray background with approximately

the same resolution and detail. Audio stimuli consisted of a carrier phrase (“Can you find

the [target]?”), into which we spliced recordings of the target words. All recordings

featured a female speaker and were created following the procedures described in Fernald

et al. (2008). We selected words from the MacArthur-Bates Communicative Development

Inventory word list (Fenson et al., 1994, 2007), choosing some words that we were certain

nearly all children would be very familiar with (e.g., “car,” “dog,” “bottle”) and others

that were intended to be slightly more challenging (e.g., “monkey,” “shovel,” “lion”).

Novel words were mono- and di-syllabic words that had been used in previous experiments

of this type (e.g. “dax,” “pifo,” “kreeb”). We further included four fillers to break up the

experiment (e.g., a picture of a child rowing a boat with a sentence of audio describing it).

All reaction times were computed from the onset of the target word.
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Table 3

Demographic information for the final sample of children in each data collection condition

of our experiment.

Condition Age Group N Mean Age Prop. Male

Tablet 1 18 1.71 0.44

2 22 2.46 0.68

3 24 3.56 0.67

4 22 4.51 0.59

Eye-tracker 1 17 1.43 0.47

2 19 2.48 0.58

3 17 3.55 0.76

4 16 4.52 0.56

Storybook 1 15 1.62 0.60

2 19 2.49 0.32

3 19 3.48 0.53

4 20 4.48 0.45

Procedure. Procedures were substantively identical in the three data-collection

conditions. In each, experimental stimuli were presented in one of two pseudorandom lists,

in which trials (pairs of pictures) were counterbalanced for order and target side. The

three trial types were (1) Familiar Word trials, in which two familiar pictures were

presented and children were asked to select the image that matched a familiar word; (2)

Mutual Exclusivity (ME) Control trials, in which a familiar and a novel image were

presented and children were asked to select the image that matched a familiar word; and
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(3) ME Inference trials, in which a familiar and a novel image were presented and children

were asked to select the image that matched a novel word. The experiment had 28 trials

in total (eight of each of the three trial types plus four fillers). On each trial, two pictures

were shown side-by-side as the sentence was presented.

Eye-tracking data were collected using an SMI RED 120Hz system. Children first

completed a simple two-point calibration and then saw each trial presented on a static

slide, accompanied by audio (played over speakers). Children were seated in a carseat

mounted in an adjustable-height barber chair.

The storybook was a three-ring binder containing printouts of the slides that

participants viewed in the eye-tracking condition. An experimenter read the carrier

phrases and target words from a script.

For tablet data collection, the procedure was identical to the eye-tracking condition,

with the exception of a pre-training phase, a task to help children learn to tap

appropriately on the iPad. To advance past this training page, they needed to tap a set of

five dots in random locations; each dot transformed into an “X” when tapped; a second

page showed the same game with smiley faces. We found that this fun training sequence

helped children select pictures effectively during the rest of the experiment. During test

trials, touches were disabled until 300 ms after the onset of the target word. After the

target was touched, the participant’s choice was highlighted with a red border and further

clicks were disabled.

Results

Accuracy. Accuracy for the eye-tracker was calculated as the proportion of total

time in the trial that participants spent fixating the target in the period starting 300 ms

after the onset of the target word, divided by the summed looking at the target and the

distractor. The eye-tracker showed relatively limited sensitivity to the word recognition of
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the youngest children; neither familiar word recognition nor ME inference performance

was above chance (t(16) = 1.23, p = 0.24, and t(11) = 0.52, p = 0.62; different degrees of

freedom are due to missing data). In contrast, ME control trial performance was above

chance (t(12) = 4.49, p < 0.001). Two-year-olds and older children were reliably above

chance for all trial types, with the exception of two-year-olds in the ME inference trials

who trended towards above chance performance (t(17) = 1.98, p = 0.06). Overall, our

impression was that the sensitivity of our eye-tracking paradigm was limited relative to

other experiments of this type (Fernald et al., 2006), perhaps due to the necessity of

designing a stimulus set that was relatively engaging for the full age range we studied.

Accuracies were higher for the storybook and tablet conditions. In both conditions,

responding was above chance for one-year-olds in familiar word trials (smallest t > 2.57,

p < .02) and was above chance for the tablet in the ME control trials

(t(17) = 2.23, p = 0.04) but not for the other trial types.

To equate across the slightly different age distributions for the different groups, and

to quantify the broader pattern of differences, we fit a logistic mixed effects model to data

from the tablet and storybook condition (Jaeger, 2008). We specified fixed effects of age

(continuous), condition, and trial type (dummy coded, with familiar word trials as the

intercept) and all interactions, and with random effects of trial type varying by

participant. We found significant main effects of age (β = 1.17, p < .0001) and trial type

(ME control, β = −3.86, p < .0001, ME inference, β = −1.36, p = .05). We also found

significant age by trial type, condition by trial type, and age by condition by trial type

interactions for the ME control trials, capturing the pattern that these trials were

relatively more difficult for younger children in the storybook condition than the tablet

condition.

Reaction Time. We did not measure reaction times (RTs) in the storybook

condition; though coding these from video would in principle have been possible, timing
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was not tightly controlled. RTs on the tablet were defined as the time from word onset to

first tap on correct trials. Eye-tracking RTs were defined as the time to switch from

distractor to target on trials where the eyes were initially fixating the distractor at the

point of disambiguation (for more details, see Fernald et al., 2008). For the tablet RT

data, we found a significant proportion of extreme outliers. In an exploratory analysis, we

fit a Gaussian mixture model and found that the best BIC values were produced by a

two-cluster solution—featuring a large faster cluster and a small, very slow cluster,

probably interpretable as children who were hesitant to respond.

We excluded RTs faster than 500 ms or slower than 4000 ms. These values were

determined post-hoc, based on visual inspection of the distribution. They correspond well

both to our intuitions about the task and to our exploratory analyses (and resulted in a

loss of 10.9% of values). In future work, we recommend the adoption of a priori standards

for RT exclusion; we did not do so here because exploring such standards was a goal of the

current experiment. Experimenting with other reaction-time outlier exclusion processes

did not qualitatively alter the pattern of results. Nevertheless, we recommend that

investigators using this method carefully examine their distribution of reaction times, as

averages can be heavily skewed by just a small number of very long RTs.

Overall, older children were faster in both the eye-tracker and tablet conditions.

Because of the different magnitudes of RTs across the two conditions, we fit independent

linear mixed effect models to the logarithm of reaction time for each. A model fit to the

eye-tracker data revealed only a main effect of age. A model fit to the eye-tracker data

with fixed effects of age (continuous), trial type, and their interaction and random effects

of trial type by participant revealed only a highly reliable main effect of age. No further

patterns were visible in the eye-tracker data, perhaps due to the relatively low number of

trials that were included in this analysis. (Computing RTs from two-alternative

eye-tracking data requires excluding approximately half of all trials, because the



Tablet-based Data Collection 31

participant is already fixating the target at the point of disambiguation). In contrast, a

model fit to the tablet data also showed a highly significant main effect of age

(β = −.24, p < .0001) and a significant age by trial type interaction such that ME

inference trials were slower for older children (β = 0.07, p = .04).


