
Cognition xxx (2010) xxx–xxx
Contents lists available at ScienceDirect

Cognition

journal homepage: www.elsevier .com/locate /COGNIT
Three ideal observer models for rule learning in simple languages

Michael C. Frank a,⇑, Joshua B. Tenenbaum b

a Department of Psychology, Stanford University, United States
b Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, United States
a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Language acquisition
Artificial language learning
Bayesian modeling
Generalization
Infant development
0010-0277/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.cognition.2010.10.005

⇑ Corresponding author. Address: Department of
University, 450 Serra Mall, Jordan Hall (Building 420
United States. Tel.: +1 650 724 4003.

E-mail address: mcfrank@stanford.edu (M.C. Fra

Please cite this article in press as: Frank, M. C.
nition (2010), doi:10.1016/j.cognition.2010.10
a b s t r a c t

Children learning the inflections of their native language show the ability to generalize
beyond the perceptual particulars of the examples they are exposed to. The phenomenon
of ‘‘rule learning’’—quick learning of abstract regularities from exposure to a limited set of
stimuli—has become an important model system for understanding generalization in
infancy. Experiments with adults and children have revealed differences in performance
across domains and types of rules. To understand the representational and inferential
assumptions necessary to capture this broad set of results, we introduce three ideal obser-
ver models for rule learning. Each model builds on the next, allowing us to test the conse-
quences of individual assumptions. Model 1 learns a single rule, Model 2 learns a single
rule from noisy input, and Model 3 learns multiple rules from noisy input. These models
capture a wide range of experimental results—including several that have been used to
argue for domain-specificity or limits on the kinds of generalizations learners can
make—suggesting that these ideal observers may be a useful baseline for future work on
rule learning.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction: from ‘‘rules vs. statistics’’ to statistics
over rules

A central debate in the study of language acquisition
concerns the mechanisms by which human infants learn
the structure of their first language. Are structural aspects
of language learned using constrained, domain-specific
mechanisms (Chomsky, 1981; Pinker, 1991), or is this
learning accomplished using more general mechanisms
of statistical inference (Elman et al., 1996; Tomasello,
2003)? Recent experiments have provided compelling
demonstrations of the types of abstract regularities that
can be learned from short exposures to novel language
stimuli (Gómez, 2002; Gómez & Gerken, 1999; Marcus,
Vijayan, Bandi Rao, & Vishton, 1999; Saffran, Aslin, &
Newport, 1996; Saffran, Newport, & Aslin, 1996; Smith &
. All rights reserved.
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Yu, 2008), suggesting that characterizing the learning
mechanisms available to infants may lead to progress in
understanding language acquisition more generally.

Experiments on generalization have provided particu-
larly important evidence for these learning abilities, which
in turn may be relevant to the acquisition of complex lin-
guistic structures. In one experiment, Marcus et al.
(1999) familiarized seven-month-olds to 2 min of syllable
strings conforming to abstract rules like ABA (e.g., ga ti
ga) or ABB (e.g., ga ti ti). When tested using a head-turn
preference procedure, infants showed a preference for
strings that violated the rule they had heard over strings
that conformed to that rule, even when both sets of test
strings were generated from syllables that had not yet
been heard.

These experiments suggested that infants could ab-
stract away from the perceptual particulars of the syllables
in the familiarization sequence and learn something like an
abstract rule, but they left many questions unanswered.
What sort of rule do infants learn—for instance, a rule
focusing on identity, like ‘‘first syllable is the same as the
ideal observer models for rule learning in simple languages. Cog-
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1 This approach to modeling learning is also sometimes referred to as a
‘‘computational level’’ analysis, after Marr (1982), because it describes the
computational structure of the task rather than the algorithms or mech-
anisms necessary to perform it. Models at the computational level
(including ideal observer models) typically make use of Bayesian methods
to compute normative statistical inferences.

2 M.C. Frank, J.B. Tenenbaum / Cognition xxx (2010) xxx–xxx
third syllable,’’ or one focusing on difference, like ‘‘second
syllable different from third syllable’’? From among the
many rules that are consistent with the data, how do learn-
ers decide which should guide generalization? Do learners
even acquire a ‘‘rule’’ at all, or instead, some kind of sub-
symbolic summary?

Subsequent studies of rule learning in language acquisi-
tion have addressed all of these questions, but for the most
part have collapsed them into a single dichotomy of ‘‘rules
vs. statistics’’ (Seidenberg & Elman, 1999). The poles of
‘‘rules’’ and ‘‘statistics’’ are seen as accounts of both how
infants represent their knowledge of language (in explicit
symbolic ‘‘rules’’ or implicit ‘‘statistical’’ associations) as
well as which inferential mechanisms are used to induce
their knowledge from limited data (qualitative heuristic
‘‘rules’’ or quantitative ‘‘statistical’’ inference engines). For-
mal computational models have focused primarily on the
‘‘statistical’’ pole: for example, neural network models de-
signed to show that the identity relationships present in
ABA-type rules can be captured without explicit rules,
as statistical associations between perceptual inputs across
time (Altmann, 2002; Christiansen & Curtin, 1999;
Dominey & Ramus, 2000; Marcus, 1999; Negishi, 1999;
Shastri, 1999; Shultz, 1999, but c.f. Kuehne, Gentner, &
Forbus, 2000).

We believe the simple ‘‘rules vs. statistics’’ debate in
language acquisition needs to be expanded, or perhaps
exploded. On empirical grounds, there is support for both
the availability of rule-like representations and the ability
of learners to perform statistical inferences over these
representations. Abstract, rule-like representations are
implied by findings that infants are able to recognize
identity relationships (Tyrell, Stauffer, & Snowman,
1991; Tyrell, Zingaro, & Minard, 1993) and even new-
borns have differential brain responses to exact repeti-
tions (Gervain, Macagno, Cogoi, Peña, & Mehler, 2008).
Monkeys (Wallis, Anderson, & Miller, 2001), rats (Murphy,
Mondragón, & Murphy, 2008), and honeybees (Giurfa,
Zhang, Jenett, Menzel, & Srinivasan, 2001) can recognize
and generalize the same sorts of relations that infants
can, though the tasks that have been used to test this
kind of relational learning vary widely across populations.
Learners are also able to make statistical inferences about
which rule to learn. For example, infants may have a pref-
erence towards parsimony or specificity in deciding be-
tween competing generalizations: when presented with
stimuli that were consistent with both an AAB rule and
also a more specific rule, AA di (where the last syllable
was constrained to be the syllable di), infants preferred
the narrower generalization (Gerken, 2006, 2010). Follow-
ing the Bayesian framework for generalization proposed
by Tenenbaum and Griffiths (2001), Gerken suggests that
these preferences can be characterized as the products of
rational statistical inference.

On theoretical grounds, we see neither a pure ‘‘rules’’
position nor a pure ‘‘statistics’’ position as sustainable or
satisfying. Without principled statistical inference mecha-
nisms, the pure ‘‘rules’’ camp has difficulty explaining
which rules are learned or why the right rules are learned
from the observed data. Without explicit rule-based repre-
sentations, the pure ‘‘statistics’’ camp has difficulty
Please cite this article in press as: Frank, M. C., & Tenenbaum, J. B. Three
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accounting for what is actually learned; the best neural
network models of language have so far not come close
to capturing the expressive compositional structure of lan-
guage, which is why symbolic representations continue to
be the basis for almost all state-of-the-art work in natural
language processing (Chater & Manning, 2006; Manning &
Schütze, 2000).

Driven by these empirical and theoretical consider-
ations, our work here explores a proposal for how concepts
of ‘‘rules’’ and ‘‘statistics’’ can interact more deeply in
understanding the phenomena of ‘‘rule learning’’ in human
language acquisition. Our approach is to create computa-
tional models that perform statistical inference over rule-
based representations and test these models on their fit
to the broadest possible set of empirical results. The suc-
cess of these models in capturing human performance
across a wide range of experiments lends support to the
idea that statistical inferences over rule-based representa-
tions may capture something important about what hu-
man learners are doing in these tasks.

Our models are ideal observer models: they provide a
description of the learning problem and show what the
correct inference would be, under a given set of assump-
tions. The ideal observer approach has a long history in
the study of perception and is typically used for under-
standing the ways in which performance conforms to or
deviates from the ideal (Geisler, 2003).1 On this approach,
the ideal observer becomes a baseline from which predic-
tions about human performance can be made. When perfor-
mance deviates from this baseline, researchers can make
inferences about how the assumptions of the model differ
from those made by human learners (for example, by
assuming perfect memory for input data or perfect deci-
sion-making among competing alternatives).

Our models are not models of development. While it is
possible to use ideal observer models to describe develop-
mental changes (e.g., Kiorpes, Tang, Hawken, & Movshon,
2003), the existing data on rule learning do not provide a
rich enough picture to motivate developmental modeling.
With few exceptions (Dawson & Gerken, 2009; Johnson
et al., 2009), empirical work on rule learning has been
geared towards showing what infants can do, rather than
providing a detailed pattern of successes and failures
across ages. Thus, rather than focusing on the capabilities
of learners at a particular age, we have attempted to cap-
ture results across the developmental spectrum. It is likely
that as more developmental patterns are described empir-
ically, the models we present will need to be modified to
take into account developmental changes in cognitive
abilities.

In the first section of the paper, we describe the hypoth-
esis space for rules that we use and propose three different
ideal observer models for inferring which rule or rules gen-
erated a set of training data. These models build on, rather
ideal observer models for rule learning in simple languages. Cog-
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than competing with, one another so as to identify which
assumptions in each model are crucial for fitting particular
phenomena. In the second section, we apply these models
to a range of experiments from the literature on infant rule
learning.
2. Models

We first create a hypothesis space which defines the set
of possible rules that our models could learn and then use
Bayesian inference to decide which of these rules best fits
the available training strings. The hypothesis space is con-
stant across all three models, but the inference procedure
varies depending on the assumptions of each model. This
section describes the hypothesis space first, then the infer-
ence procedures for each model, and then our methods for
linking model simulations to the results of experiments
with human infants.2

Our approach is to make the simplest possible assump-
tions about representational components, including the
structure of the hypothesis space and the prior on hypoth-
eses. As a consequence, the hypothesis space of our models
is too simple to describe the structure of interesting phe-
nomena in natural language, and our priors do not capture
any of the representational biases that human learners
may brings to language acquisition.

Nevertheless, our hope is that this approach will help in
articulating the principles of generalization underlying
experimental results on rule learning. While a visit to the
lab is surely too short to acquire representations with the
semantic or syntactic complexity of natural language, arti-
ficial language learning tasks are nevertheless useful tools
for investigating the principles by which both simple and
complex structures can be learned (Gomez & Gerken,
2000). Our current models are designed around the same
logic: they are attempts to characterize the principles that
allow learners to succeed in learning, rather than realistic
sketches of the representations that are being learned.
3 Due to algorithmic considerations, we assume a hypothesis space
which includes only the appropriate primitives. Including a larger set of
2.1. Hypothesis space

Although the hypothesis space for sequential rules
could be infinitely large in principle, in practice describing
the available empirical data requires only a relatively small
set of hypotheses, due to the simplicity of the languages
used in infant experiments. This hypothesis space is based
on the idea of a rule as a restriction on strings. We define
the set of strings S as the set of ordered triples of elements
s1, s2, s3 where all s are members of vocabulary of elements,
V. There are thus jVj3 possible elements in S. (All of the
experiments we address here make use of three-element
sequences, but this convention is easily extended to longer
strings).

For each set of simulations, we define S as the total set
of string elements used in a particular experiment. For
example, in the training portion of the first experiment
conducted by Marcus et al. (1999), they made use of the
2 Matlab code for models and simulations is available at http://
langcog.stanford.edu/materials/rules.html.
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set of elements S = {ga, gi, ta, ti, na, ni, la, li}. These elements
are treated by our models as unique identifiers that do not
encode any information about phonetic relationships be-
tween syllables.

A rule defines a subset of S. Rules are written as ordered
triples of primitive functions (f1, f2, f3). Each function oper-
ates over an element in the corresponding position in a
string and returns a truth value. For example, f1 defines a
restriction on the first string element, x1. The set F of func-
tions is a set which for our simulations includes � (a func-
tion which is always true of any element) and a set of
functions is y(x) which are only true if x = y where y is a
particular element. The majority of the experiments ad-
dressed here make use of only one other function: the
identity function =a which is true if x = xa. For example, in
Marcus et al. (1999), learners heard strings like ga ti ti
and ni la la, which are consistent with (�, �, =2) (ABB, or ‘‘sec-
ond and third elements equal’’). The stimuli in that exper-
iment were also consistent with another regularity,
however: (�,�,�), which is true of any string in S. One addi-
tional set of experiments makes use of musical stimuli
for which the functions >a and <a (higher than and lower
than) are defined. They are true when x > xa and x < xa

respectively.3

Our definition of the hypothesis space restricts the set
of possible subsets of S that can be written. Since there
are 83 = 512 strings in S for the Marcus et al. (1999) vocab-
ulary, the number of possible arbitrary subsets is very
large. However, our notation allows us to write only
jFj3 = 1331 possible distinct rules in the Marcus case, of
which only 758 pick out distinct subsets of S. An uncon-
strained version of our notation allows logically equivalent
rules (e.g. (=2, =3, =1) and (�, =3, =1), both of which pick out
strings where all three elements are equal). To avoid ambi-
guities of this sort, we eliminate redundant rules and as-
sume that rules are uniquely defined by their extension.

2.2. Model 1: single rule

Model 1 begins with the framework for generalization
introduced by Tenenbaum and Griffiths (2001). It uses ex-
act Bayesian inference to calculate the posterior probabil-
ity of a particular rule r given the observed set of training
sentences T = t1 . . . tm. This probability can be factored via
Bayes’ rule into the product of the likelihood of the training
data being generated by a particular rule p(Tjr), and a prior
probability of that rule p(r), normalized by the sum of
these over all rules:

pðrjTÞ ¼ pðTjrÞpðrÞP
r02RpðTjr0Þpðr0Þ : ð1Þ

We assume a uniform prior p(r) = 1/jRj, meaning that no
rule is a priori more probable than any other. For human
learners the prior over rules is almost certainly not uni-
possible primitives results will have little effect except under conditions
where they capture a superset of the relations captured by a current
primitive (e.g. ‘‘=2_ isdi’’). Such cases of compositional rules could be treated
appropriately using a complexity prior. We return to this issue in Section 4.

ideal observer models for rule learning in simple languages. Cog-
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form and could contain important biases about the kinds of
structures that are used preferentially in human language
(whether these biases are learned or innate, domain-
general or domain-specific). However, understanding the
structure of this prior even for a simple hypothesis space
like the one used here will take a large amount of empirical
data. Since no data of this form exist, we have chosen an
uninformative uniform prior.4

We assume that training examples are generated by
sampling uniformly from the set of sentences that are con-
gruent with one rule. This assumption is referred to as
strong sampling, and leads to the size principle: the proba-
bility of a particular string being generated by a particular
rule is inversely proportional to the total number of strings
that are congruent with that rule (which we notate jrj).
Under the size principle, the probability of a set of strings
given a rule is

pðTjrÞ ¼
Y

ti2T
pðtijrÞ; ð2Þ

where

pðtijrÞ ¼
1
jrj : ð3Þ

One benefit of the simplicity of Model 1 is that we can
use exact enumeration to compute the posterior probabil-
ity of any particular rule given a set of training data.

2.3. Model 2: single rule under noise

Model 1 assumed that every data point must be ac-
counted for by the learner’s hypothesis. However, there
are many reasons this might not hold for human learners:
the learner’s rules could permit exceptions, the data could
be perceived noisily such that a training example might
be lost or mis-heard, or data could be perceived correctly
but not remembered at test. Model 2 attempts to account
for these sources of uncertainty by consolidating them all
within a single parameter. While future research will al-
most certainly differentiate these factors (for an example
of this kind of work, see Frank, Goldwater, Griffiths, &
Tenenbaum, 2010), here we consolidate them for
simplicity.

To add noise to the input data, we add an additional
step to the generative process: after strings are sampled
from the set consistent with a particular rule, we flip a
biased coin with weight a. With probability a, the string
remains the same, while with probability 1 � a, the string
is replaced with another randomly chosen element.

Under Model 1, a rule had likelihood zero if any string in
the set T was inconsistent with it. With any appreciable le-
vel of input uncertainty, this likelihood function would re-
sult in nearly all rules having probability zero. To deal with
this issue, we assume in Model 2 that learners know that
their memory is fallible, and that strings may be misre-
4 Note that we distinguish between two senses of the term prior. In
informal use, the term often refers to modeling assumptions such as the
assumption that identity is a primitive operation. Here we use it in the
technical sense of a probability distribution over rules that are possible in
the representation language we have chosen.
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membered with probability 1 � a. Eq. (3) now reflects this
assumption:

pðtijrÞ ¼
a
jrj þ

ð1�aÞ
jSj if ti consistent with r;

ð1�aÞ
jSj�jrj otherwise;

8<
: ð4Þ

where jSj is the total number of strings in the language. The
top alternative—if a training string ti is consistent with the
rule r—is the sum of two terms: first, the probability a � 1

jrj
that ti was not corrupted and was sampled from r; and sec-
ond, the probability that t was sampled uniformly from the
set of all possible strings (and just happened to be consis-
tent with r by chance). The bottom alternative—if t is not
consistent with r—is the probability that ti was sampled
uniformly from the set of all possible strings and did not
happen to be consistent with r by chance.
2.4. Model 3: multiple rules under noise

Model 3 loosens an additional assumption: that all the
strings in the input data are the product of a single rule. In-
stead, it considers the possibility that there are multiple
rules, each consistent with a subset of the training data.
We encode a weak bias to have fewer rules via a prior
probability distribution that favors more compact parti-
tions of the input. This prior is known as a Chinese Restau-
rant Process (CRP) prior (Rasmussen, 2000); it introduces a
second free parameter, c, which controls the bias over clus-
terings. A low value of c encodes a bias that there are likely
to be many small clusters, while a high value of c encodes a
bias that there are likely to be a small number of large
clusters.

The joint probability of the training data T and a parti-
tion Z of those strings into rule clusters is given by

PðT; ZÞ ¼ PðTjZÞPðZÞ; ð5Þ

neglecting the parameters a and c. The probability of a
clustering P(Z) is given by CRP(Z,c).5

Then the probability of the training data given the clus-
ter assignments is the product of independent terms for
each string:

PðTjZÞ ¼
Y
ti2T

PðtijziÞ; ð6Þ

where zi is the cluster assignment for each individual
string. Because strings in each cluster c are generated by
a rule rc for that cluster, we group the terms in Eq. (6) into
a product over clusters and then a separate product over
strings in that cluster:

PðTjZÞ ¼
Y

c

Y
ti2c

X
rc

PðtijrcÞPðrcÞ: ð7Þ
CRPðZ; cÞ ¼ CðcÞ � c
Cðcþ nÞ

z2Z

CðjzjÞ;

where C is the gamma (generalized factorial) function, jZj is the number
of clusters, jzj is the size of each cluster, and n is the number of total train-
ing examples.

ideal observer models for rule learning in simple languages. Cog-
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Table 1
Summary of results fit by Models 1–3.

Paper Result modeled Model
1

Model
2

Model
3

Marcus et al.
(1999)

Rule learning x x x

Endress et al.
(2007)

Ordinal vs. identity
rules

x x x

Frank et al.
(2009)

Uni- vs. multi-modal
learning

x x x

Gerken (2006) Breadth of
generalization

x x x

Gerken (2010) Breadth of x x

M.C. Frank, J.B. Tenenbaum / Cognition xxx (2010) xxx–xxx 5
Because rc is not known, the inner sum integrates the pre-
dictions of all rules congruent with the strings in the clus-
ter, weighted by their prior P(rc). As in Models 1 and 2 we
assume a uniform prior P(rc). We use Eq. (4) (the noise like-
lihood function) from Model 2 to give us the probability of
a particular test string given a rule.

Unlike in Models 1 and 2, inference by exact enumera-
tion is not possible and so we are not able to compute the
normalizing constant. But we are still able to compute the
relative posterior probability of a partition of strings into
clusters (and hence the posterior probability distribution
over rules for that cluster). Thus, we can use a Markov-
chain Monte Carlo (MCMC) scheme to find the posterior
distribution over partitions. In practice we use a Gibbs
sampler, an MCMC method for drawing repeated samples
from the posterior probability distribution via iteratively
testing all possible cluster assignments for each string
(MacKay, 2003).

2.5. Input data and linking hypotheses

In all simulations we calculate the posterior probability
distribution over rules given the set of unique string types
used in the experimental stimuli. We use types rather than
rather than individual string tokens because a number of
computational and experimental investigations have sug-
gested that types rather than tokens may be a psychologi-
cally natural unit for generalization (Gerken & Bollt, 2008;
Goldwater, Griffiths, & Johnson, 2006; Richtsmeier, Gerken,
& Ohala, in press).6

To assess the probability of a set of test items
E = e1 . . . en (again computed over types rather than tokens)
after a particular training sequence, we calculate the total
probability that those items would be generated under a
particular posterior distribution over hypotheses. This
probability is

pðEjTÞ ¼
X
rj2R

Y
ek2E

pðekjrjÞpðrjjTÞ; ð8Þ

which is the product over examples of the probability of a
particular example, summed across the posterior distribu-
tion over rules p(RjT). For Model 1 we compute p(ekjrj)
using Eq. (2); for Models 2 and 3 we use Eq. (4).

We use surprisal as our main measure linking posterior
probabilities to the results of looking time studies. Surpris-
al (negative log probability) is an information-theoretic
measure of how unlikely a particular outcome is. It has
been used previously to model adult reaction time data
in sentence processing tasks (Hale, 2001; Levy, 2008) as
well as infant looking times (Frank, Goodman, &
Tenenbaum, 2009). For the studies that used two-alterna-
6 In the models as formulated we have assumed that strings in the
language are sampled in sequence with replacement from all grammatical
strings. When using type-level data, sampling without replacement and
without regard for the sequence of observations may be more natural. This
produces similar model predictions but makes the mathematics more
complex. For instance, the likelihood for Model 1 (Eqs. (2) and (3)) would
become m!ðjrj�mÞ!

jrj! , representing the probability of drawing a subset of m types
from a language with jrj types in total. When r is large relative to m (as it is
in nearly all of our simulations), this formulation is closely approximated
by the likelihood we use here.
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tive forced-choice measures, we used a Luce choice rule
(Luce, 1963) to compute the probability of choosing one
alternative over the other. Since both of these studies were
fit using Model 3, the score for each alternative was the
non-normalized posterior probability of the appropriate
clustering.
3. Results

We report simulation results for each of the three mod-
els across a variety of experiments in the literature on rule
learning. Results are ordered in terms of which models
adequately capture the pattern of results. Table 1 gives a
summary of model coverage.
3.1. Marcus et al. (1999)

Marcus et al. (1999) exposed infants to strings of sylla-
bles of the form ABA or ABB and then evaluated whether in-
fants had learned the appropriate rule by exposing them to
alternating sets of strings made up of novel syllables but
conforming to either the same regularity they had heard
during training or another (e.g. for ABB training, test was
novel strings of forms ABA and ABB). As a group, infants lis-
tened longer to the strings instantiating the rule they had
not learned, despite the matched novelty of the individual
syllables.

All three models were able to learn the correct rules in
these experiments. When trained on 16 ABA training
strings, Model 1 identified two hypotheses with non-zero
posterior probability: (�, �, �) and (�, �, =1), but the more spe-
cific identity rule received far higher posterior probability;
the same was true for ABB (Table 2). Model 1 also showed
far higher surprisal to rule-incongruent strings (Table 3).
Results of simulations with Models 2 and 3 confirmed that
the posterior distribution over rules for both models very
strongly supported the correct generalizations.
generalization
Marcus et al.

(2007)
Asymmetric cross-
modal transfer

x x

Saffran et al.
(2007)

Individual differences
in learning

x x

Gómez (2002) Multiple non-
adjacent
dependencies

x

Kovács and
Mehler
(2009)

Bilingual rule
learning

x

ideal observer models for rule learning in simple languages. Cog-
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Table 2
Log posterior probabilities over rules for simulations using Model 1. All
rules with non-zero probability are listed. The highest probability rule for
each experiment is shown in bold. Note: �0.00 represents very small
numbers, corresponding to probabilities very slightly less than 1.

Paper Condition Rule Log P

Marcus (1999) ABA (�, �, �) �33.27
(�, �, =1) �0.00

ABB (�, �, �) �33.27
(�, �, =2) �0.00

Endress et al. (2007) ABB (�, �, �) �8.32
(�, �, =2) �0.00

LHM (�, �, �) �8.33
(�, �, >1) �5.21
(�, �, <2) �5.21
(�, >1, �) �5.21
(�, >1, >1) �3.42
(�, >1, <2) �3.42
(�, >3, >1) �0.09

Frank et al. (2009) ABB-uni (�, �, �) �5.38
(�, �, =2) �0.00

ABB-multi (�, �, �) �10.75
(�, �, =2) �0.00

Gerken (2006) AAB (�, �, �) �8.32
(�, =1, �) �0.00

AAx (�, �, �) �16.64
(�, �, isx) �8.32
(�, =1, �) �8.32
(�, =1, isx) �0.00

Gerken (2010) column + 5 (�, �, �) �18.71
(�, =1, �) �0.00

music + 5 (�, �, �) �10.40
(�, =1, �) �0.00

Table 3
Surprisal (negative log probability) for a single test item for simulations
with Model 1. The rule stimulus inferred by the experimenters to have been
learned (if there was evidence of learning) is shown in bold. Due to
differences in the age of participants, levels of surprisal necessary for
success are not comparable across experiments.

Paper Condition Test Surprisal

Marcus (1999) ABA ABB 39.51
ABA 4.16

ABB ABB 4.16
ABA 39.51

Endress et al. (2007) ABB ABB 4.97
ABA 17.39

LHM LHM 5.44
MHL 9.45

Frank et al. (2009) ABB-uni ABB 3.59
ABA 10.76

ABB-multi ABB 7.17
ABA 21.50

Gerken (2006) AAB AAB 4.16
ABA 14.56

AAx AAB 12.48
ABA 22.87

AAx E2 AAx 2.08
AxA 22.87

Gerken (2010) column + 5 AAB 4.16
ABA 24.95

music + 5 AAB 4.16
ABA 16.64
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3.2. Endress, Dehaene-Lambertz, and Mehler (2007)

Endress et al. (2007) investigated differences between
identity functions and what they called ‘‘ordinal’’ func-
tions: higher or lower in musical pitch. They presented
adult participants with sets of four three-tone strings
instantiating either identity rules like ABB or ABA or else
ordinal rules like low–high–middle (LHM) or middle–
high–low (MHL). In their experiments they found that
while participants were able to distinguish test sequences
in the identity condition (ABB vs. ABA), they never distin-
guished the ordinal rules (LHM vs. MHL) at greater than
chance levels. This result was interpreted as evidence for
the view that identity functions but not ordinal functions
are ‘‘perceptual primitives’’ which are accessible for the
construction of symbolic abstractions.

Our results suggest that their experimental stimuli
show structural differences which confound the issue of
the functions they used with the complexity of the rules
constructed from those functions. While the correct
hypothesis in the identity case had much higher posterior
probability under Model 1 than did the only competitor
(the null rule), the same was not true in the case of the
ordinal rules, where a number of possible rules were con-
sistent with the training stimuli (Table 2). Surprisal values
showed that the test stimuli were more different from one
another in the identity condition than the ordinal condi-
tion (Table 3). Thus, the striking difference in the perfor-
mance of adult participants observed by Endress et al.
could have been due to the complexity of the rules being
learned, as well as to the kinds of functions in those rules.7
3.3. Frank et al. (2009)

Experiments by Frank, Slemmer, Marcus, and Johnson
(2009) suggested that five-month-old infants did not show
evidence of learning ABA or ABB rules when they were
presented unimodally using either auditory syllables
or sequentially looming visual stimuli. When training
examples were presented using coordinated multi-modal
stimuli (a looming shape accompanied by a syllable), how-
ever, five-month-olds showed evidence of discrimination
at test.

This effect may be captured in a number of ways by
Models 1 and 2. Under Model 1, these results can be de-
scribed via differences in the dimensionality of S (the set
of possible training sequences) for uni- and multi-modal
stimuli: with eight elements arranged into three-item
strings, there are 83 = 512 unimodal strings possible; with
eight syllables which each can be accompanied by one of
eight shapes, there are 82 = 64 primitive units and
643 = 262,144 possible strings. Tables 2 and 3 show results
using these different dimensionalities.

Alternatively, this result can be fit in Model 2 simply by
assuming different values of a for uni- and multi-modal
stimuli. This account is in alignment with the predictions
the Intersensory Redundancy Hypothesis (Bahrick &
7 A simpler comparison of ordinal and identity relations would be a
comparison of (�, �, =2) and (�, �, >2).

ideal observer models for rule learning in simple languages. Cog-
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Fig. 1. Simulation results for Model 2 on the results of Gerken (2006, 2010). Left side: horizontal axis shows values of a (memory noise parameter). Vertical
axis shows the difference in surprisal values (in bits) for rule-incongruent stimuli relative to rule-congruent stimuli, an index of learning. Middle: difference
in surprisal is plotted across the five conditions in the two experiments for the parameter shown by filled markers on the left axis. Right side: differences in
looking times from Gerken (2006, 2010). Note that the music + 5 condition produced a familiarity, rather than novelty, preference.

8 Although these strings could also be argued to be more salient because
of their recency, this effect is likely to be small relative to the dozens of
repetitions of the AAx strings heard during familiarization.
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Lickliter, 2000; Bahrick, Flom, & Lickliter, 2002), which as-
sumes greater salience—rather than greater informational
content—for intermodal stimuli (for more discussion of
the differences between these accounts, see Frank et al.,
2009).

3.4. Gerken (2006)

Gerken (2006) investigated the breadth of the general-
izations drawn by learners when exposed to different input
corpora, testing learners on strings either of the form AAB
or of the form AAx (where x represented a single syllable).
Model 1 correctly identified the rule (�, =1, �) for AAB and (�,
=1, isx) for AAx (Table 2). Unlike human infants, who did not
discriminate examples from the more general rules (AAB
vs. ABA) when trained on specific stimuli (AAx), Model 1
showed differences in surprisal between all three condi-
tions (Table 3). The absolute magnitude of the probability
of the congruent (AAB) test items in the AAx-training con-
dition was extremely low, however.

Model 2 produced a similar pattern of results to those
observed by Gerken (Fig. 1), with the majority of a values
producing a qualitatively similar picture. With AAx training
and testing on AAx and AxA strings (notated in the figure as
AAx E2), there was a large difference in surprisal; because
of the specificity of the AAx rule, (�, =1, isdi) was highly fa-
vored in the posterior and the incongruent strings were
highly surprising relative to the congruent strings. AAB
training with AAB vs. ABA test also produced differences.
Model 2 showed no difference between congruent and
incongruent test items for the condition in which infants
failed, however, suggesting that the probability of memory
noise in Model 2 swamped the low absolute probabilities
of the test items.

3.5. Gerken (2010)

Gerken (2010) investigated the flexibility of infants’
generalizations by testing whether they were able to
Please cite this article in press as: Frank, M. C., & Tenenbaum, J. B. Three
nition (2010), doi:10.1016/j.cognition.2010.10.005
switch between a narrow and a broad generalization with
only a small amount of evidence. Seven and a half month-
olds were either trained on AAx stimuli for the majority of
the familiarization with three of the last five strings consis-
tent with AAB (‘‘column + 5’’ condition), or played music
for the majority of the familiarization and then the same
five strings (‘‘music + 5’’ condition). At test, infants famil-
iarized to the column + 5 condition discriminated AAB from
ABA stimuli, while those in the music + 5 condition showed
a comparably large but non-significant familiarity prefer-
ence. Under Model 1, differences between the column + 5
and music + 5 condition were apparent but relatively
slight, since all of the three AAB-consistent strings sup-
ported the broader generalization in both conditions.

These results do not take into account the much greater
exposure of the infants to the narrow-generalization
strings (those consistent with AAx). To capture this differ-
ential we conducted simulations with Model 2 where we
assumed a lower level of a (which we denote by a+5) for
the three new string types that were introduced at the
end of exposure (Fig. 1).8 Across a range of a and a+5 values,
although the model did not reproduce the familiarity/nov-
elty reversal seen in the experimental data, there was a sig-
nificant difference between the column + 5 condition and
the music + 5 condition. This difference was due to the extra
support for the broad generalization given by the well-
remembered familiarization strings in the column + 5
condition.
3.6. Interim discussion

In the preceding results, differences across conditions
and experiments produced a range of differences in sur-
prisal based in Model 1. Correct and incorrect test items
varied in both their relative and absolute probabilities,
ideal observer models for rule learning in simple languages. Cog-
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and understanding when these differences were likely to
predict a difference in looking time or responding was
not always straightforward. We introduced Model 2 in part
to quantify the intuition that, in cases where absolute
probabilities were very small (as in the AAx condition of
Gerken, 2006), the differences between conditions would
be overwhelmed by even a low level of memory noise.

The a parameter in Model 2 is useful for more than just
explaining these situations, however. In the following sec-
tions we turn to two results where there may be intrinsic
differences in the representation of stimuli between
modalities or between individuals. We then end by consid-
ering two results that can only be fit by Model 3, a model
that can learn different rules to explain different subsets
of the input data.
9 Although test stimuli were scored using Eq. (4), in these simulations (as
in others) they were not themselves corrupted. This manipulation reflects
the differences between training (in which it is necessary to remember
multiple strings to make a generalization) and test (in which posterior
surprisal can be calculated for individual strings). We conducted an
identical set of simulations for the Marcus et al. (2007) data where test
sequences were corrupted and again found a large range of a values under
which the cross-modal transfer condition produced significantly higher
surprisal values than the non-speech condition (although there was now an
appreciable gap in performance between speech and cross-modal transfer
conditions as well).
3.7. Marcus, Fernandes, and Johnson (2007)

Marcus et al. (2007) reported that while 7.5 month-olds
showed evidence of learning rules in sung speech stimuli
(with different syllables corresponding to each tone), they
did not appear to have learned the same rules when the
training stimuli were presented in pure tones instead of
sung speech. In addition, children trained with speech
stimuli seemed to be able to discriminate rule-congruent
and rule-incongruent stimuli in other modalities—tones,
musical instrument timbres, and animal sounds—at test.
Marcus and colleagues interpreted this evidence for
cross-modal transfer as suggesting that infants may ana-
lyze speech more deeply than stimuli from other
modalities.

Model 2 allows a test of a possible alternative explana-
tion, inspired by the robust effects of prior knowledge on
the recognition of stimuli in noise found in object percep-
tion (e.g. Biederman, 1972; Eger, Henson, Driver, & Dolan,
2007; Gregory, 1970; Sadr & Sinha, 2004): knowing what
object you are looking for allows recognition under a
higher level of noise than when the object is unknown. If
Please cite this article in press as: Frank, M. C., & Tenenbaum, J. B. Three
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non-speech domains are ‘‘noisier’’ (encoded or remem-
bered with lower fidelity) than speech stimuli, rules may
be easier to recognize in noisy, non-speech stimuli than
they are to extract from those same stimuli.

Model 2 reproduces the cross-modal transfer asymme-
try reported by Marcus et al. (2007) although it assumes
only differences in memory—rather than structural differ-
ences in the kinds of patterns that are easy to learn—across
domains. To capture the hypothesis of differential familiar-
ity with speech, we assumed that whatever the value of aS

for speech, the value of aNS for non-speech stimuli would
be lower. Fig. 2, left, plots the difference in surprisal be-
tween the speech/non-speech (S–NS) and non-speech/
non-speech (NS–NS) conditions while varying aS and aNS.
Surprisal was higher in the S–NS condition than in the
NS–NS condition, suggesting that a basic difference in
memory noise could have led to the asymmetry that Mar-
cus et al. reported.9

3.8. Saffran, Pollak, Seibel, and Shkolnik (2007)

Saffran et al. (2007) showed that infants succeeded in
learning rules from simultaneously-presented pictures of
dogs of different breeds (e.g. malamute-cattle dog-cattle
dog). The authors reported a correlation between parents’
ratings of how interested the infant was in dogs and the
size of the rule-congruent/rule-incongruent looking time
difference at test, suggesting that individual differences
ideal observer models for rule learning in simple languages. Cog-
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Fig. 3. Model 3 simulation results on the experimental stimuli of Gómez (2002). Left side: choice probability for two rules (correct) vs. one rule (incorrect)
for a range of a values at c = 1, plotted by the number of X elements (see text). Middle: results from a single parameter set, marked with filled circles in the
left axis. Right side: adult experimental data from Gómez (2002), replotted as proportion correct. Error bars show standard error of the mean.
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in experience with a particular stimulus item might aid in
rule learning. Using Model 2, we simulated rule learning
across a range of a values and tested whether there was
a correlation between the strength of encoding and the
resulting surprisal values. Higher values of a led to higher
surprisal at test (r = .88), indicating a relationship between
familiarity/encoding fidelity and learning similar to that
observed by Saffran et al.
3.9. Gómez (2002)

Gómez (2002) investigated the learning of non-adjacent
dependencies by adults and 18-month-olds. Eighteen-
month-olds were trained on a language that contained
sentences of the form aXb and cXd where a, b, c, and d rep-
resented specific words while X represented a class of
words whose membership was manipulated across partic-
ipants. When participants were trained on sentences gen-
erated with 2, 6, or 12 X elements, they were not able to
distinguish aXb elements from aXc elements at test, sug-
gesting that they had not learned the non-adjacent depen-
dency between a and b; when they were trained on
sentences with 24 X elements, they learned the non-
adjacent dependency.10

Models 1 and 2 both fail in this task because both only
have the capacity to encode a single rule. Under Model 1,
all training stimuli are only consistent with the null rule
(�, �, �); under Model 2, at some levels of a, a single rule like
(isa, �, isb) is learned while strings from the other rule are
attributed to noise.

In contrast, Model 3 with a = 1 successfully learns both
rules—(isa, �, isb) and (isb, �, isc)—in all conditions, including
10 Gómez’s experiment differs from the other experiments described here
in that a learner could succeed simply by memorizing the training stimuli,
since the test was a familiarity judgment rather than a generalization test.
Nevertheless, the results from Gómez’s experiments—and from a replica-
tion in which novel and familiar test items were rated similarly (Frank &
Gibson, in press)—both suggest that memorization is not the strategy taken
by learners in languages of this type.
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when X has only two elements. To test whether memory
noise might impede performance, we calculated the choice
probability for the correct, two-rule hypothesis compared
with the incorrect, one-rule hypothesis across a range of
values of a and c. Results for c = 1 are shown in Fig. 3; in
general, c values did not strongly affect performance. For
high levels of noise, one rule was equally likely as the var-
iability of X increased; in contrast, for low levels of noise,
two rules were more likely as the variability of X increased.
At a moderate-to-high level of noise (a = .4), Model 3
matched human performance, switching from preferring
one rule at lower levels of variability to two rules at the
highest level of variability. These results suggest that,
although variability increases generalization (as claimed
by Gomez), memory constraints may work against vari-
ability by increasing the number of examples necessary
for successful generalization (for a more detailed discus-
sion and some experimental results in support of this
hypothesis, see Frank & Gibson, in press).
3.10. Kovács and Mehler (2009)

Work by Kovács and Mehler (2009b) investigated the
joint learning of two rules at once. They found that while
bilinguals were able to learn that two different rules (ABA
and AAB) cued events at two different screen locations,
monolinguals only learned to anticipate events cued by
one of the two rules. They interpreted these results in
terms of early gains in executive function by the bilingual
infants (Kovács & Mehler, 2009a).

Under Model 3, Kovács & Mehler’s hypothesis can be
encoded via differences in the c parameter across ‘‘bilin-
gual’’ and ‘‘monolingual’’ simulations. The c parameter
controls the concentration of the prior distribution on
rules: when c is high, Model 3 is more likely to posit many
rules to account for different regularities; when c is low, a
single, broader rule is more likely. We conducted a series of
simulations, in which we assumed that bilingual learners
had a higher value of c than did monolingual learners.
ideal observer models for rule learning in simple languages. Cog-
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Fig. 4. Model 3 simulation results on the experimental stimuli of Kovács and Mehler (2009). Left axis plots difference in probability between two rules and
one rule by a (noise parameter) across a range of parameter values. Each line shows this probability difference for a pair of cB (bilingual) and cM

(monolingual) values, shown on the right side. Right axis shows relative rule probability for bilingual and monolingual simulations for one set of
parameters, marked with a filled circle in the left axis.
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Results are shown in Fig. 4. Across a range of parameter
values, simulations with the ‘‘bilingual’’ parameter set as-
signed a higher choice probability to learning two rules,
while simulations with the ‘‘monolingual’’ parameter set
assigned more probability to learning a single rule.

Model 3’s success suggests that the empirical results
can be encoded as a more permissive prior on the number
of regularities infants assume to be present in a particular
stimulus. In practice this may be manifest via better exec-
utive control, as hypothesized by Kovács & Mehler.
Although in our current simulations we varied c by hand,
under a hierarchical Bayesian framework it should be pos-
sible to learn appropriate values for parameters on the ba-
sis of their fit to the data, corresponding to the kind of
inference that infant learners might make in deciding that
the language they are hearing comes from two languages
rather than one.

4. General discussion

The infant language learning literature has often been
framed around the question ‘‘rules or statistics?’’ We sug-
gest that this is the wrong question. Even if infants repre-
sent symbolic rules with relations like identity—and there
is every reason to believe they do—there is still the ques-
tion of how they learn these rules, and how they converge
on the correct rule so quickly in a large hypothesis space.
This challenge requires statistics for guiding generalization
from sparse data.

In our work here we have shown how domain-general
statistical inference principles operating over minimal
rule-like representations can explain a broad set of results
in the rule learning literature. We created ideal observer
Please cite this article in press as: Frank, M. C., & Tenenbaum, J. B. Three
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models of rule learning that incorporated a simple view
of human performance limitations, seeking to capture the
largest possible set of results while making the fewest pos-
sible assumptions. Rather than providing models of a spe-
cific developmental stage or cognitive process, our goal
was instead to create a baseline for future work that can
be modified and enriched as that work describes the effects
of processing limitations and developmental change on
rule learning. Our work contrasts with previous modeling
work on rule learning that has been primarily concerned
with representational issues, rather than broad coverage.

The inferential principles encoded in our models—the
size principle (or in its more general form, Bayesian Oc-
cam’s razor) and the non-parametric tradeoff between
complexity and fit to data encoded in the Chinese Restau-
rant Process—are not only useful in modeling rule learning
within simple artificial languages. They are also the same
principles that are used in computational systems for nat-
ural language processing that are engineered to scale to
large datasets. These principle have been applied to tasks
as varied as unsupervised word segmentation (Brent,
1999; Goldwater, Griffiths, & Johnson, 2009), morphology
learning (Albright & Hayes, 2003; Goldwater et al., 2006;
Goldsmith, 2001), and grammar induction (Bannard,
Lieven, & Tomasello, 2009; Klein & Manning, 2005; Perfors,
Tenenbaum, & Regier, 2006). Our work suggests that
although the representations used in artificial language
learning experiments may be too simple to compare with
the structures found in natural languages, the inferential
principles that are revealed by these studies may still be
applicable to the problems of language acquisition.

Despite the broad coverage of the simple models de-
scribed here, there are a substantial number of results in
ideal observer models for rule learning in simple languages. Cog-
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the broader literature on rule learning that they cannot
capture. Just as the failures of Model 1 pointed towards
Models 2 and 3, phenomena that are not fit by our models
point the way towards aspects of rule learning that need to
be better understood. To conclude, we review three sets of
issues—hypothesis space complexity, type/token effects in
memory, and domain-specific priors—that suggest other
interesting computational and empirical directions for fu-
ture work.

First, our models assumed the minimal machinery
needed to capture a range of findings. Rather than making
a realistic guess about the structure of the hypothesis
space for rule learning, where evidence was limited we as-
sumed the simplest possible structure. For example,
although there is some evidence that infants may not al-
ways encode absolute positions (Lewkowicz & Berent,
2009), there have been few rule learning studies that go
beyond three-element strings. We therefore defined our
rules based on absolute positions in fixed-length strings.
For the same reason, although previous work on adult con-
cept learning has used infinitely expressive hypothesis
spaces with prior distributions that penalize complexity
(e.g. Goodman, Tenenbaum, Feldman, & Griffiths, 2008;
Kemp, Goodman, & Tenenbaum, 2008), we chose a simple
uniform prior over rules instead. With the collection of
more data from infants, however, we expect that both
more complex hypothesis spaces and priors that prefer
simpler hypotheses will become necessary.

Second, our models operated over unique string types
as input rather than individual tokens. This assumption
highlights an issue in interpreting the a parameter of Mod-
els 2 and 3: there are likely different processes of forgetting
that happen over types and tokens. While individual to-
kens are likely to be forgotten or misperceived with con-
stant probability, the probability of a type being
misremembered or corrupted will grow smaller as more
tokens of that type are observed (Frank et al., 2010). An
interacting issue concerns serial position effects. Depend-
ing on the location of identity regularities within se-
quences, rules vary in the ease with which they can be
learned (Endress, Scholl, & Mehler, 2005; Johnson et al.,
2009). Both of these sets of effects could likely be captured
by a better understanding of how limits on memory inter-
act with the principles underlying rule learning. Although a
model that operates only over types may be appropriate
for experiments in which each type is nearly always heard
the same number of times, models that deal with linguistic
data must include processes that operate over both types
and tokens (Goldwater et al., 2006; Johnson, Griffiths, &
Goldwater, 2007).

Finally, though the domain-general principles we have
identified here do capture many results, there is some
additional evidence for domain-specific effects. Learners
may acquire expectations for the kinds of regularities that
appear in domains like music compared with those that
appear in speech (Dawson & Gerken, 2009); in addition, a
number of papers have described a striking dissociation
between the kinds of regularities that can be learned from
vowels and those that can be learned from consonants
(Bonatti, Peña, Nespor, & Mehler, 2005; Toro, Nespor,
Mehler, & Bonatti, 2008). Both sets of results point to a
Please cite this article in press as: Frank, M. C., & Tenenbaum, J. B. Three
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need for a hierarchical approach to rule learning, in which
knowledge of what kinds of regularities are possible in a
domain can itself be learned from the evidence. Only
through further empirical and computational work can
we understand which of these effects can be explained
through acquired domain expectations and which are best
explained as innate domain-specific biases or constraints.
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