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Abstract

This paper presents Bayesian non-parametric models that simultaneously learn to
segment words from phoneme strings and learn the referents of some of those
words, and shows that there is a synergistic interaction in the acquisition of these
two kinds of linguistic information. The models themselves are novel kinds of
Adaptor Grammars that are an extension of an embedding of topic models into
PCFGs. These models simultaneously segment phoneme sequences into words
and learn the relationship between non-linguistic objects to the words that refer to
them. We show (i) that modelling inter-word dependencies not only improves the
accuracy of the word segmentation but also of word-object relationships, and (ii)
that a model that simultaneously learns word-object relationships and word seg-
mentation segments more accurately than one that just learns word segmentation
on its own. We argue that these results support an interactive view of language
acquisition that can take advantage of synergies such as these.

1 Introduction

Conventional views of language acquisition often assume that human language learners initially
use a single source of information to acquire one component of language, which they then use to
leverage the acquisition of other linguistic components. For example, Kuhl [1] presents a standard
“bootstrapping” view of early language acquisition in which successively more difficult tasks are
addressed by learners, beginning with phoneme inventory and progressing to word segmentation
and word learning. This view is also taken implicitly by, e.g., Graf Estes et al [2], who showed that
infants were more successful in mapping novel objects to novel words after those words had been
successfully segmented from the speech stream. We contrast this view with an “interactive” view of
language acquisiion in which learners do not move from problem to problem, but instead attempt to
learn all of the components of language at once. Computationally speaking, an interactive account
views language acquisition as a joint inference problem for all components of language simultane-
ously, rather than a discrete sequence of inference problems for individual language components.
(We are thus using “interactive” to refer to the way that language acquisition is formulated as an
inference problem, rather than a specific mechanism or architecture as in [3]).

One advantage of an interactive approach is that it can take advantage of synergies in acquisition,
i.e., situations where partial knowledge of several different aspects of language mutually aid their
acquisition, i.e., where improvements in the acquisition of component A also improves the acqui-
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PIG|DOG i Mz ND M& Mt ND Me Np MI Mg︸ ︷︷ ︸
PIG

Figure 1: The photograph indicates non-linguistic context containing the (toy) pig and dog for the
utterance Is that the pig?. Below that, we show the input provided to our models representing
this utterance [8]. The objects in the non-linguistic context are indicated by the prefix “PIG|DOG”,
which is followed by the unsegmented phonemicised input. The possible word segmentation points
are indicated by separators between the phonemes. The correct analysis of this input (which is not
provided to the model) is depicted by blue annotations to this input. The correct word segmentation
is indicated by the filled blue word separators, and the mapping between words and non-linguistic
objects is indicated by the underbrace subscript.

sition of component B, and improvements in the acquisition of component B also improves the
acquisition of component A. An interactive approach can take advantage of both of these, while
staged approach to activation where A is learned before B forgoes the ability to use knowledge of
B to help learn A.

In this paper we focus on the acquisition of two of the simpler aspects of language: (i) segmenting
sentences into words (thereby identifying their pronunciations), and (ii) the relationship between
words and the objects they refer to. We present a sequence of models for inferring (i) and (ii), and
demonstrate synergistic interactions in learning. Specifically, we show that (i) modifying the model
in a way that improves its word segmentation ability also improves its ability to identify the intended
referents of utterances, and that (ii) incorporating a more sophisticated model of the relationship
between words and the objects they refer to also improves the model’s ability to segment words.

The acquisition of word pronunciations is viewed as a segmentation problem as follows. Following
Elman [4] and Brent [5, 6], a corpus of child-directed speech is “phonemicised” by looking each
word up in a pronouncing dictionary and concatenating those pronunciations. For example, the
mother’s utterance Is that the pig is mapped to the broad phonemic representation Iz D&t D6 pIg (in
an ASCII-based broad phonemic encoding), which are then concatenated to form IzD&tD6pIg. The
word segmentation task is to segment a corpus of such unsegmented utterance representations into
words, thus identifying the pronunciations of the words in the corpus.

We study the acquisition of the relationship between words and the objects they refer to using the
framework proposed by Frank et al [7]. Here each utterance in the corpus is labelled with the
contextually-relevant objects that the speaker might be referring to. These are determined by in-
specting videos of the utterance context. For example, in the context of Figure 1, the utterance
would be labelled with the two contextually-relevant objects PIG and DOG. The learner’s task is
identify which words, if any, in the utterance refer to each of these objects.

Jones et al [8] combined the word segmentation and word reference tasks into a single inference
task, where the goal is to simultaneously segment the utterance into words, and to map a subset of
the words of each utterance to the utterance’s contextually-relevant objects. This is the task that we
investigate in this paper.

The rest of this paper is structured as follows. The next section summarises previous work on word
segmentation and learning the relationship between words and their referents. Section 3 introduces
Adaptor Grammars, explains how they can be used for word segmentation and topic modelling, and
presents the Adaptor Grammars that will be used in this paper. Section 4 presents experimental
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results showing synergistic interactions between word segmentation and learning the relationship
between words and the objects they refer to, while section 5 summarises and concludes the paper.

2 Previous work

Word segmentation has been studied using a wide variety of computational perspectives. Elman [4]
and Brent [5, 6] introduced the basic word segmentation paradigm investigated here. Goldwater
et al [9] introduced a non-parametric model of word segmentation based on Hierarchical Dirichlet
Processes (HDPs) [10], and demonstrated that a bigram model, which captures dependencies be-
tween adjacent words, produces significantly more accurate segmentations than a unigram model,
which assumes each word in a sentence is generated independently. Because the unigram model
makes the “bag of words” assumption it has no way to capture inter-word dependencies. Because
there are strong inter-word dependencies in real language, e.g., a noun like ball is very likely to be
preceeded by determiners the or a, a unigram model tends to undersegment, e.g., misanalyse the ball
as a single word. The bigram model, because it explicitly models and hence can “explain away” the
dependency between the and ball, is more likely to correctly segment this example.

Johnson et al [11] introduced a generalisation of Probabilistic Context-Free Grammars (PCFGs)
called Adaptor Grammars (AGs) as a framework for specifying HDPs for linguistic applications
(because this paper relies heavily on AGs we describe them in more detail in section 3 below).
Johnson [12] investigated AGs for word segmentation that capture a range of different kinds of
generalisations. The unigram AG replicates the unigram segmentation model of Goldwater et al,
and suffers from the same undersegmentation problems. It turns out that it is not possible to express
Goldwater et al’s bigram model as an AG, but a collocation AG, which is a HDP that generates
a sentence as a sequence of collocations where each collocation is a sequence of words, captures
similiar inter-word dependencies and produces very similiar word segmentation results.

The acquisition of the mapping between words and the objects they refer to was studied by Frank
et al [7]. They used a modified version of the LDA topic model [13] where the “topics” are
contextually-relevant objects that words in the utterance can refer to, so the mapping from “top-
ics” to words effectively specifies which words refer to these contextually-salient objects. Jones
et al [8] integrated the Frank et al “topic” model of the word-object relationship with the unigram
model of Goldwater et al to obtain a joint model that both performs word segmentation and also
learns which words refer to which contextually-salient objects.

Johnson [14] explains how LDA topic models can be expressed as PCFGs. We use this reduction
to express Frank et al models [7] of the word to object relationship as AGs which also incorporate
Johnson’s [12] models of word segmentation. The resulting AGs can express a wide range of joint
HDP models of word segmentation and the word-object relationship, including the model proposed
by Jones et al [8], as well as several generalisations.

3 Adaptor grammars for segmentation and word-object acquisition

This section provides an informal introduction to Adaptor Grammars (AGs) and how they can be
used to express word segmentation and topic models, and presents the AGs for joint segmentation
and acquisition of the word-object relationship. For more detail on the formal properties of AGs see
[11], and for information on AG inference procedures see [15, 16].

3.1 Probabilistic Context-Free Grammars

Adaptor Grammars (AGs) are an extension of Probabilistic Context-Free Grammars (PCFGs), which
we describe first. A Context-Free Grammar (CFG) G = (N,W,R, S) consists of disjoint finite sets
of nonterminal symbolsN and terminal symbolsW , a finite set of rulesR of the formA→ α where
A ∈ N and α ∈ (N ∪W )?, and a start symbol S ∈ N . (We assume there are no “ε-rules” in R, i.e.,
we require that |α| ≥ 1 for each A→ α ∈ R).

A CFG G generates a set of finite, labelled, ordered trees TX for each X ∈ N ∪W . If X ∈W (i.e.,
X is a terminal) then TX = {X}, i.e., the singleton set consisting of a one-node tree labelled X . If
X ∈ N then TX consists of all trees t whose root node is labelled X , each leaf node’s label is in
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W , each non-leaf node’s label is in N , and for each non-leaf node x in t with label A ∈ N there is
a rule A→ α ∈ R such that the sequence of labels of x’s children is α. The set of strings generated
by G is the set of yields of TS , where the yield of a tree is sequence of its leaf nodes’ labels.

A Probabilistic Context-Free Grammar PCFG is a quintuple (N,W,R, S,θ) where (N,W,R, S) is
a CFG and θ is a vector of non-negative reals indexed by R that satisfy

∑
α∈RA

θA→α = 1 for each
A ∈ N , where RA = {A→ α : A→ α ∈ R} is the set of rules expanding A.

Informally, θA→α is the probability of a node labelled A expanding to a sequence of nodes labelled
α, and the probability of a tree is the product of the probabilities of the rules used to construct each
non-leaf node in it. More precisely, for each X ∈ N ∪W a PCFG associates distributions GX over
the trees TX as follows:

If X ∈ W (i.e., if X is a terminal) then GX is the distribution that puts probability 1 on the single-
node tree labelled X . If X ∈ N (i.e., if X is a nonterminal) then:

GX =
∑

X→B1...Bn∈RX

θX→B1...Bn
TDX(GB1 , . . . , GBn

) (1)

where:

TDA(G1, . . . , Gn)

(
�� PP
X

t1 tn. . .

)
=

n∏
i=1

Gi(ti).

That is, TDA(G1, . . . , Gn) is a distribution over TA where each subtree ti is generated indepen-
dently from Gi. The PCFG generates the distribution GS over the trees TS , where S is the start
symbol; the distribution over the strings it generates is obtained by marginalising over the trees.

In a Bayesian PCFG one puts Dirichlet priors Dir(α) on the rule probability vector θ, such that
there is one Dirichlet parameter αA→α for each rule A → α ∈ R. In the “unsupervised” inference
problem for a PCFG one is given a CFG, parameters α for Dirichlet priors over the rule probabil-
ities, and a corpus of strings. The task is to infer the corresponding posterior distribution over rule
probabilities θ. Recently Bayesian inference algorithms for PCFGs have been described. Kurihara
et al [17] describe a Variational Bayes algorithm for inferring PCFGs using a mean-field approxi-
mation, while Johnson et al [18] describe a Markov Chain Monte Carlo algorithm based on Gibbs
sampling.

3.2 Modelling word-object reference using PCFGs

This section presents a novel encoding of a Frank et al [7] model for identifying word-object re-
lationships as a PCFG. It is an adaptation of the reduction of LDA topic models to PCFGs given
by Johnson [14]. That paper showed how to construct a PCFG that generates the same distribution
over a collection of documents as an LDA model, and where Bayesian inference for the PCFG’s
rule probabilities yields the corresponding distributions as Bayesian inference of the corresponding
LDA models. Because the Frank et al [7] model of the word-object relationship is very similiar to an
LDA topic model, we can use the same techniques to design Bayesian PCFGs that infer word-object
relationships.

The models we investigate in this paper assume that the words in a single sentence refer to at most
one non-linguistic object (although it would be easy to relax this restriction). In this subsection
we assume that the vocabulary V (i.e., a set of words) is given, as is the set O of objects that they
can refer to. Let O′ = O ∪ {∅}, where ∅ is a distinguished “null object” not in O, and let the
nonterminals N = {S} ∪ {Ao, Bo : o ∈ O′}, where Ao and Bo are nonterminals indexed by the
o ∈ O. Informally, a nonterminal Bo expanding to word w ∈ V indicates that w refers to object o,
while a B∅ expanding to w indicates that w is non-referential.

The set of objects in the non-linguistic context of an utterance is indicated by prefixing the utterance
with a context identifier associated with those objects, such as “PIG|DOG” in Figure 1. A context
identifier c is a subset of O′ that contains ∅ (i.e., the null object is always in context). We assume
we are given a (non-empty) set C of context identifiers disjoint from V . Then the terminals of the
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Figure 2: A tree generated by the reference PCFG encoding a Frank et al [7] model of the word-
object relationship. The yield of this tree corresponds to the sentence Is that the pig, and the context
identifier is “PIG|DOG”.

PCFG are W = V ∪ C, and the rules R of the PCFG are all instances of the following schemata:

S→ Ao o ∈ O′
Ao → c c ∈ C, o ∈ c
Ao → AoBo o ∈ O′
Ao → AoB∅ o ∈ O′
Bo → w o ∈ O′, w ∈ V

(2)

We call this the reference PCFG because it generates word-object reference pairs. An example of a
tree generated by this grammar is shown in Figure 2. This grammar generates sentences consisting
of a context identifier followed by a sequence of words; e.g. PIG|DOG is that the pig. Informally, the
rule expanding S picks an object o that the words in the object can refer to (if o = ∅ then all words
in the sentence are non-referential). The first rule expanding Ao ensures that o is a member of that
sentence’s non-linguistic context, the second rule generates aBo that will ultimately generate a word
w (which we take to indicate that w refers to o), while the third rule generates a word associated
with the null object ∅.
A slightly more complicated PCFG, which we call the reference1 grammar, can enforce the require-
ment that there is at most one referential word in each sentence. This constraint often holds in
the simple sentences that appear in infant-directed speech (e.g., in Is that the pig?, the pig is only
mentioned once).

S→ SB∅
S→ c c ∈ C
S→ AoBo o ∈ O
Ao → c c ∈ C, o ∈ c
Ao → AoB∅ o ∈ O
Bo → w o ∈ O′, w ∈ V

(3)

In this grammar the nonterminal labels function as states that record not just which object a ref-
erential word refers to, but also whether that referential word has been generated or not. Viewed
top-down, the switch from S to Ao indicates that a word from Bo has just been generated (i.e.,
which we interpret as referring to object o). This object o is passed down the Ao chain generating
words fromB∅; the final expansion ofAo → c checks that o is compatible with the context indicator
c.

3.3 Adaptor grammars

This subsection briefly reviews adaptor grammars; for more detail see [11]. An Adaptor Grammar
(AG) is a septuple (N,W,R, S, θ, A,C) consisting of a PCFG (N,W,R, S, θ) in which a subset
A ⊆ N of the nonterminals are identified as adapted, and where each adapted nonterminal X ∈ A
has an associated adaptor CX . An adaptor CX for X is a function that maps a distribution over
trees TX to a distribution over distributions over TX . In this paper we use two-parameter Poisson-
Dirirchlet distributions as adaptors, so the corresponding predictive distributions are Pitman-Yor
Processes (PYPs).
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Just as for a PCFG, an AG defines distributions GX over trees TX for each X ∈ N ∪W . If X ∈W
or X 6∈ A then GX is defined just as for a PCFG above, i.e., using (1). However, if X ∈ A then GX
is defined in terms of an additional distribution HX as follows:

GX ∼ CX(HX)

HX =
∑

X→Y1...Ym∈RX

θX→Y1...Ym TDX(GY1 , . . . , GYm)

That is, the distribution GX associated with an adapted nonterminal X ∈ A is a sample from
“adapting” (i.e., applying CX to) its “ordinary” PCFG distribution HX .

Just as with the PCFG, an AG generates the distribution over trees GS , where S ∈ N is the start
symbol. However, while GS in a PCFG is a fixed distribution (given the rule probabilities θ), in an
AG the distribution GS is itself a random variable (because each GX for X ∈ A is random).

Informally, an AG can be understood as caching the trees associated with adapted nonterminals.
Generating a tree associated with an adapted nonterminal involves either reusing an already gener-
ated tree from the cache, or else generating a “fresh” tree as in a PCFG.

3.4 Word segmentation with adaptor grammars

AGs can be used as models of word segmentation, which we briefly review here; see Johnson [12]
for more details. The input to the AG consists of a corpus of phoneme strings. For example, the
phoneme string corresponding to Is that the pig? (with its correct segmentation indicated in blue) is
as follows:

i Mz ND M& Mt ND Me Np MI Mg
We can represent any possible segmentation of any possible sentence as a tree generated by the
following unigram AG.

Sentence→Word+

Word→ Phoneme+

Phonemes→ a | b | . . .
(4)

The trees generated by this adaptor grammar are the same as the trees generated by the CFG rules.
(In this and following grammars, the Kleene “+” is expanded into a set of left-recursive rules). For
example, the following skeletal parse in which all but the Word nonterminals are suppressed (the
others are deterministically inferrable) shows the parse that corresponds to the correct segmentation
of the string above.

(Word i z) (Word D & t) (Word D e) (Word p I g)

Because the Word nonterminal in the AG is adapted (indicated here by underlining) the adaptor
grammar learns the probability of the entire Word subtrees (e.g., the probability that pIg is a Word);
see [12] for further details. This AG implements the unigram segmentation model of Goldwater
et al [9], and as explained in section 2, it has the same tendancy to undersegment as the original
unigram model.

The collocation AG (5) produces a more accurate segmentation because it models (and therefore
“explain away”) some of the inter-word dependencies.

Sentence→ Colloc+

Colloc→Word+

Word→ Phoneme+

Phonemes→ a | b | . . .

(5)

The collocation AG is a hierarchical process, where the base distribution for the Colloc (colloca-
tion) nonterminal adaptor is generated from the Word distribution. The collocation AG generates a
sentence as a sequence of Colloc (collocation) nonterminals, each of which is a sequence of Word
nonterminals. It generates skeletal parses such as the following:

(Colloc (Word i z)) (Colloc (Word D & t)) (Colloc (Word D e) (Word p I g))

In this parse, iz and D&t are analysed as both Words and Collocations, while De pIg is analysed
as a Collocation consisting of two Words. Given training corpora like the ones we use here, the
collocations this AG finds are often noun phrases.
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3.5 Adaptor grammars for joint segmentation and word-object acquisition

This section explains how to combine the word-object reference PCFGs presented in section 3.2
with the word segmentation AGs presented in section 3.4. Combining the word-object reference
PCFGs (2) or (3) with the unigram AG (4) is relatively straight-forward; all we need to do is replace
the last rule Bo → w in these grammars with Bo → Phoneme+, i.e., the Bo nonterminals expand
to an arbitray sequence of phonemes, and the Bo nonterminals are adapted, so these subtrees are
cached and reused as appropriate. For example, the unigram-reference AG is as follows:

S→ Ao o ∈ O′
Ao → c c ∈ C, o ∈ c
Ao → AoBo o ∈ O′
Ao → AoB∅ o ∈ O′
Bo → Phoneme+ o ∈ O′

The unigram-reference AG specifies essentially the same model as the one investigated in Jones et
al [8], and the results below are consistent with those that Jones et al report. This grammar generates
a skeletal parses such as the following:

(B∅ i z) (B∅ D & t) (B∅ D e) (BPIG p I g)

The unigram-reference1 AG is similiar to the unigram-reference AG, except that it stipulates that at
most one word per sentence is associated with a (non-null) object.

It is also possible to combine the word-object reference PCFGs with the collocation AG. The re-
sulting AGs are straight-forward but more complex, so they are not shown here. The collocation-
reference AG is a combination of the collocation AG for word segmentation and the reference PCFG
for modelling the word-object relationship. It permits an arbitrary number of words in a sentence to
be referential.

Interestingly, there are two different reasonable ways of combining the collocation AG with the
reference1 PCFG. The collocation-reference1 AG requires that at most one word in a sentence is
referential, just like the reference1 PCFG (3).

The collocation-referenceC1 AG is similiar to the collocation-reference1 AG, except that it requires
that at most one word in a collocation is referential. This means that the collocation-referenceC1
AG permits multiple referential words in a sentence (but they must all refer to the same object). This
AG is linguistically plausible because a collocation often consists of a content word, which may be
referential, surrounded by function words, which are generally not referential.

4 Experimental results

We used the same training corpus as Jones et al [8], which was based on the corpus collected by
Fernald et al [19] annotated with the objects in the non-linguistic context by Frank et al [7]. In these
experiments we used the publically-available AG inference software described in [15]. Rather than
specifying the concentration parameters of each Pitman-Yor Processes (PYPs) associated with the
adapted nonterminals, that software permits us to place priors on them and sample them. Here we
placed a uniform prior on all PYP a parameters and a sparse Gamma(100, 0.01) prior on the PYP b
parameters.

For each grammar we ran 8 MCMC chains for 5,000 iterations each over the corpus, and collected
the sample parses from every 10th iteration from the last 2,500 iterations generated by each run.
For each sentence in each sample we extracted the word segmentation and the word-object rela-
tionships the parse implies, so we obtained 2,000 sample analyses for each sentence in the corpus.
We computed the modal (i.e., most frequent) analysis of each sentence, and this is what we scored
below [15].

Perhaps the most basic question is: does non-linguistic context help word segmentation? We mea-
sure accuracy here by token f-score [9]. Jones et al [8] investigated this question by comparing
analyses from what we are calling the unigram and unigram-reference models, and failed to find
any overall effect of the non-linguistic context (although they did show that it improves the segmen-
tation accuracy of referential words). However, as the following table shows, we do see a marked

7



improvement in word segmentation f-score when we combine non-linguistic context with the more
accurate collocation models.

Model word segmentation f-score
unigram 0.533

unigram-reference 0.537
unigram-reference1 0.547

collocation 0.695
collocation-reference 0.726

collocation-reference1 0.719
collocation-referenceC1 0.750

We can also ask the converse question: does better word segmentation improve sentence referent
identification? Here we measure how well the models identify which object, if any, this sentence
refers to, and does not directly evaluate word segmentation accuracy. The baseline model here
assigns each sentence the “null” ∅ object, achieving an accuracy of 0.709. As the table below
shows, only the collocation-referenceC1 AG with its more complex constraints on the word-object
relationship clearly surpasses this baseline. We can also measure the f-score with which the models
identify non-∅ sentence referents; now the trivial baseline model achieves 0 f-score.

Model sentence referent accuracy sentence referent f-score
unigram 0.709 0

unigram-reference 0.702 0.355
unigram-reference1 0.503 0.495

collocation 0.709 0
collocation-reference 0.728 0.280

collocation-reference1 0.440 0.493
collocation-referenceC1 0.839 0.747

We see a marked improvement in sentence referent accuracy and sentence referent f-score with the
collocation-referenceC1 AG.

Finally, we can ask: how well do the models identify the head nouns of referring noun phrases, such
as pIg in De pIg? We measure this by calculating the f-score of (word,object) token pairs identified
by the model, where the object is not ∅. This is a single number that indicates how good the models
are at identifying referring words and the words that they refer to.

Model topical word f-score
unigram 0

unigram-reference 0.149
unigram-reference1 0.147

colloc 0
collocation-reference 0.220
collocation-reference1 0.321

collocation-referenceC1 0.636

Again, we find that the collocation-referenceC1 AG identifies referring words and the objects they
refer to more accurately than the other models.

5 Conclusion

This paper has used Adaptor Grammars (AGs) to formulate a variety of models that jointly segment
utterances into words and identify the objects in the non-linguistic context that some of these words
refer to. The AGs differed in the kinds of generalisations they are capable of learning, and in the
relationship between word segmentation and word reference that they assume. The most accurate re-
sults in word segmentation and in the identification of the word-object relationship were obtained by
the collocation-referenceC1 AG that tightly integrates a collocation-based model of word segmen-
tation with constraints that require no more than one referential word per collocation. As argued in
the introduction, this is consistent with an “interactive” approach to language learning.
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