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a b s t r a c t

Word frequencies in natural language follow a highly skewed Zipfian distribution, but the
consequences of this distribution for language acquisition are only beginning to be under-
stood. Typically, learning experiments that are meant to simulate language acquisition use
uniform word frequency distributions. We examine the effects of Zipfian distributions
using two artificial language paradigms—a standard forced-choice task and a new ortho-
graphic segmentation task in which participants click on the boundaries between words
in contexts. Our data show that learners can identify word forms robustly across widely
varying frequency distributions. In addition, although performance in recognizing individ-
ual words is predicted best by their frequency, a Zipfian distribution facilitates word seg-
mentation in context: The presence of high-frequency words creates more chances for
learners to apply their knowledge in processing new sentences. We find that computa-
tional models that implement ‘‘chunking’’ are more effective than ‘‘transition finding’’
models at reproducing this pattern of performance.

! 2013 Published by Elsevier B.V.

1. Introduction

Humans and other animals extract information from
the environment and represent it so that they can later
use the knowledge for effective recognition and inference
(Fiser, 2009). One striking example of this phenomenon
is that adults, children, and even members of other species
can utilize distributional information to segment an unbro-
ken speech stream into individual words after a short,
ambiguous exposure (Aslin, Saffran, & Newport, 1998; Saf-
fran, Aslin, & Newport, 1996; Saffran, Newport, & Aslin,
1996; Hauser, Newport, & Aslin, 2001; Thiessen & Saffran,
2003). In a now-classic segmentation paradigm, Saffran,
Newport et al. (1996) played adults a continuous stream
of synthesized speech composed of uniformly-concate-
nated trisyllabic words. After exposure to this stream, par-
ticipants were able to distinguish the original words from

non-words. In a similar experiment, participants demon-
strated the ability to distinguish words and ‘‘part-words’’
– length-matched strings that also occurred in the expo-
sure corpus, albeit with lower frequency and lower statis-
tical consistency (Aslin et al., 1998). These studies on
‘‘statistical learning,’’ combined with similar demonstra-
tions with infants, suggest that learners can use the statis-
tical structure of sound sequences to find coherent chunks
in unsegmented input.

While the results of statistical learning experiments are
impressive, it is still unknown how these findings relate to
natural language learning (Johnson & Tyler, 2010; Yang,
2004). Recent research has begun to close this gap. The
outputs of the statistical segmentation process are now
known to be good targets for word-meaning mapping (Graf
Estes, Evans, Alibali, & Saffran, 2007), and experiments
with natural languages suggest that the processes ob-
served in artificial language experiments generalize to
highly controlled natural language samples (Pelucchi,
Hay, & Saffran, 2009). In addition, adults can perform sta-
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tistical segmentation when there is variation in sentence
and word lengths (Frank, Goldwater, Griffiths, & Tenen-
baum, 2010) and when languages scaled up over multiple
days of exposure (Frank, Tenenbaum, & Gibson, 2013).
Nevertheless, there are many links between statistical seg-
mentation and natural language learning that need to be
tested.

One key difference between standard segmentation
paradigms and natural language is the distribution of word
frequencies. The empirical distribution of lexical items in
natural language follows a Zipfian distribution (Zipf,
1965), in which relatively few words are used extensively
(e.g., ‘‘the’’) while most words occur only rarely (e.g.,
‘‘toaster’’).1 In a Zipfian distribution, the absolute frequency
of a word is inversely proportional to its rank frequency. For
this reason, this kind of distribution is often characterized as
having ‘‘a long tail’’, in which a small number of word types
have very high token frequencies while many more types
have relatively low frequencies.2 While Zipfian distributions
are ubiquitous across natural language, their consequences
for learning are only beginning to be explored (Ellis &
O’Donnell, 2011; Goldwater, Griffiths, & Johnson, 2006;
Mitchell & McMurray, 2009; Yang, 2004).3

An early and influential proposal suggested that learn-
ers could succeed in statistical segmentation tasks by com-
puting the transitional probability (TP) between syllables
(Saffran, Newport et al., 1996). Learners could then posit
boundaries between units in the speech stream where TP
was especially low. (The underlying intuition is that min-
ima in TP are likely to occur at word boundaries because
there is uncertainty in what words follow other words,
while within words the order of syllables is predictable.)
In experiments on segmentation, stimuli are generally cre-
ated by randomly concatenating a small set of words with
a uniform frequency distribution so that every word fol-
lows every other word, ensuring that transition matrices
between individual syllables are well-populated (Frank
et al., 2010; Saffran, Aslin et al., 1996; Saffran, Newport
et al., 1996). Thus, in standard experiments, comparisons
between TPs are easy to make because all transitions can
be estimated accurately.

In a Zipfian language, however, the same TP procedure
would result in highly sparse transition matrices. A major-
ity of words are infrequent (e.g. ‘‘toaster’’ or ‘‘obfuscatory’’)
and their combination, even when possible, will be vanish-
ingly rare (‘‘obfuscatory toaster’’). On the other hand, some
combinations of frequent (monosyllabic) words have high
transitional probability between them despite the pres-
ence of a word boundary (e.g. ‘‘of the’’). In fact, given the

collocational structure of natural language (Goldwater, Grif-
fiths, & Johnson, 2009), the within-word transitional proba-
bilities for low-frequency words can easily be lower than the
between-word transitional probability for high-frequency
words. When transitional probability models are instanti-
ated computationally and applied to corpus data, they per-
form very poorly both in absolute terms and in
comparison to other models (Brent, 1999; Yang, 2004).
The sparsity of the transition matrices may be to blame.

The poor performance of TP-style models in corpus
evaluations leaves open two theoretical possibilities for
human learners. First, human learners may use statistical
learning mechanisms (which, on this first view, compute
TPs) only to learn a small set of word forms, and hence they
may not need to be particularly effective (Swingley, 2005).
This view is consistent with a large body of evidence sug-
gesting that infants quickly learn to make use of lexical,
prosodic, and phonotactic cues for segmentation (Blan-
chard, Heinz, & Golinkoff, 2010; Johnson & Jusczyk, 2001;
Jusczyk, Hohne, & Bauman, 1999; Mattys & Jusczyk,
2001; Shukla, White, & Aslin, 2011). This viewpoint—that
a TP-based strategy allows learners to begin the segmenta-
tion process—seems to support the general prediction that
segmentation should be more difficult (or at very least, not
facilitated) by Zipfian frequency distributions.

Second, learners may rely on a more robust statistical
learning method. In fact, non-TP computational proposals
for statistical learning make different prediction for seg-
mentation performance in Zipfian environments. Orbán,
Fiser, Aslin, and Lengyel (2008) propose a distinction be-
tween transition-finding models (like TP models) and
‘‘chunking’’ models, which look for a partition of the input
stream into statistically coherent sequences. A number of
recent models of word segmentation fall into the chunking
category, including minimum-description length (Brent &
Cartwright, 1996), Bayesian (Brent, 1999; Goldwater et al.,
2009), memory-based (Perruchet & Vinter, 1998), and con-
nectionist (French, Addyman, & Mareschal, 2011) models.
These models (and some corresponding psychological evi-
dence) suggest that segmentation performance should be
robust to—or even facilitated by—Zipfian distributions. (In
Section 4, we provide a direct test of these predictions
through a series of simulations with a variety of models.)

One reason that Zipfian distributions might facilitate
segmentation in a chunking model is because the frequent
repetition of words in Zipfian languages could help learn-
ers remember those words. Some chunking models
hypothesize that learners store word representations in
memory and match these memory representations up with
the input to segment new utterances. In these models,
stored representations will decay unless the corresponding
word is heard frequently (Perruchet & Vinter, 1998). A Zip-
fian distribution makes it highly likely that a few of the
most frequent words appear consistently across sentences,
guaranteeing that at least a few words will be learned and
retained with high reliability.

‘‘Bootstrapping’’ effects provide another route by which
Zipfian distributions could facilitate segmentation. If a no-
vel word occurs adjacent to a familiar word, it may be seg-
mented more effectively because one boundary is already
known (Perruchet & Tillmann, 2010). A Zipfian distribution

1 In many languages, the top-most frequent words consist of phonolog-
ically concise function words (e.g., ‘‘the’’). Hochmann, Endress, and Mehler
(2010) provided an experimental evidence suggesting that 17-month-olds
could distinguish function words from content words based on words’
relative token frequencies.

2 Here and below, we make use of the distinction between word types—
distinct word forms—and word tokens—individual instances of a type.

3 Zipfian distributions are ubiquitous across many other phenomena
(e.g., city populations) as well; even randomly generated texts exhibit a
Zipfian word frequency distribution (Li, 1992). We take it for granted that
natural languages have this structure without attempting to explain its
presence.
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would facilitate this kind of bootstrapping effect because a
small number of high-frequency words (‘‘anchors’’) could
create known contexts for low-frequency words (Valian &
Coulson, 1988). Because bootstrapping effects are central
to our predictions, below we provide a more detailed
example of how they could arise.

Assume a language like the one used by Saffran, Newport
et al. (1996), containing six word types (Fig. 1). When words
are concatenated uniformly to make sentences, as in Fig. 1a,
boundaries become unambiguous only after a certain num-
ber of word types are observed and the TPs are estimated. On
the other hand, when they follow a Zipfian distribution, as in
Fig. 1b, the most frequent words are repeated in nearly every
sentence. If these high-frequency words are learned quickly
and retained, they provide a clear context for the acquisition
of lower-frequency words, as pictured in Fig. 1c.

In what follows, we distinguish two kinds of effects that
have previously been labeled as ‘‘bootstrapping.’’ Contex-
tual facilitation is when an otherwise less recognizable word
(e.g., jkl in Fig. 1c) is better segmented due to the adjacency
of a well-established word (e.g., abc). Contextual bootstrap-
ping is when hearing the sequence abcjkl, containing the
known word abc and novel word jkl, facilitates the identifi-
cation of jkl in the future. Under this definition, facilita-
tion—help segmenting a word in context—is a component
of bootstrapping. Bootstrapping further involves retaining
that word for future use. Thus, contextual facilitation is
the advantage given by high-frequency or otherwise known
material in a particular context, while contextual boot-
strapping is the same advantage in future contexts.

Brent and Cartwright (1996) proposed a model imple-
menting contextual bootstrapping based on sequential for-
mation of rudimentary word chunks. Their INCDROP
model segmented utterances by detecting familiar items
and recognizing them as meaningful chunks, while storing

the remaining chunks of the utterance as novel words. For
example, if look were recognized as a familiar unit in the
utterance lookhere, then the remaining portion, here, would
be inferred as a potential lexical unit. This model and many
others (Brent, 1999; Goldwater et al., 2009; Perruchet &
Vinter, 1998) make use of contextual bootstrapping in
more or less direct ways, but all suggest that knowledge
of familiar words should help in recognition of new ones.
In Fig. 1c, for example, recognition of the frequent words
(abc def) is expected to provide boundaries for infrequent
words (ghi, jkl,mno) that will bootstrap their recognition
in subsequent presentations.

Several psychological studies have tested whether
known words facilitate the segmentation of nearby words,
with mixed results. Dahan and Brent (1999) tested for con-
textual bootstrapping effects in adult word segmentation
experiments and found some evidence for them, although
primarily at the beginnings and ends of sentences. Bortfeld,
Morgan, Golinkoff, and Rathbun (2005) found that 6-
month-olds were able to find new words more easily when
they were presented adjacent to words that were already
familiar to them (e.g., the child’s own name). Hollich, Jus-
czyk, and Brent (2001), however, failed to find evidence
that a familiar context (e.g., words like ‘‘flower’’) aided
24-month-olds in segmenting new words.

Isolated words are also often assumed to create a strong
contextual bootstrapping effect (Aslin, Woodward, LaMen-
dola, & Bever, 1996), and a number of studies have investi-
gated their role in segmentation. Brent and Siskind (2001)
found that 9% of caregiver utterances consisted of words
produced in isolation, and 27% of these cases were imme-
diate repetition of words used in neighboring utterances
(e.g., ‘‘Want some milk? Milk?’’). Building on this descrip-
tive work, experimental evidence suggests that exposure
to words in isolation establishes familiarity with these
words, which serve as ‘‘anchors’’ in subsequent segmenta-
tion (Conway, Bauernschmidt, Huang, & Pisoni, 2010; Cun-
illera, Càmara, Laine, & Rodrı́guez-Fornells, 2010; Lew-
Williams, Pelucchi, & Saffran, 2011; van de Weijer, 2001).
Thus, several lines of research point toward a potential
advantage of a Zipfian distribution, where a limited num-
ber of words readily acquire familiarity due to their dispro-
portionate input frequencies.

To summarize, previous psychological as well as com-
putational work leaves us with two different predictions
about the effects of the Zipfian word frequency distribution
in natural language on word segmentation performance.
Under transition-finding models, Zipfian distributions pro-
vide sparser input, making the segmentation problem
more difficult. Under chunk-finding models, Zipfian distri-
butions provide frequent chunks that may even facilitate
word segmentation by using known contexts to segment
novel words more effectively.

In the current study, we present data from two experi-
ments investigating adult learners’ performance in artifi-
cial language word segmentation tasks that compare
Zipfian and uniform frequency distributions. Our data
show that learners can identify words in languages with
widely varying frequency distributions, consistent with
models of segmentation that posit a frequency-based
chunking procedure. In addition, our data suggest that

Fig. 1. Small-scale examples of a 6-word language following (a) uniform
and (b) Zipfian distributions. Letters represent syllables and blocks
represent words; block boundaries are pictured as a convenience but
are assumed not to be available to the learner. If highly frequent words
are recognized earlier, they can provide known ‘‘anchors’’ to facilitate
segmentation of lower-frequency words, illustrated in (c).
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Zipfian languages provide a specific advantage for word
recognition in context: in such languages, new words tend
to occur next to high-frequency words that are already
known. Finally we confirm the efficacy of chunking models
for segmenting input with a Zipfian distribution by com-
paring the fit of a variety of computational models to the
human data.

2. Experiment 1

We first asked whether learners could learn the forms
of words from unsegmented input with a Zipfian word-fre-
quency distribution. To test this question, we made use of
the paradigm originated by Saffran, Newport et al. (1996)
to measure statistical word segmentation in adult learners.
In this paradigm, learners listen passively to a sample of
unsegmented, monotone synthesized speech and then are
asked to make two-alternative forced-choice judgements
about which of two strings sounds more like the language
they just heard. We used the version of this paradigm
adapted by Frank et al. (2010), which includes several fea-
tures of natural language, such as silences between sen-
tences and words of varying lengths.

2.1. Methods

2.1.1. Participants
We posted 259 separate HITs (Human Intelligence

Tasks: experimental tasks for participants to work on) on
Amazon’s Mechanical Turk service. We received 202 HITs
from distinct individuals (a mean of 25 for each token fre-
quency and distribution condition). Participants were paid
$0.75 and the task took approximately 7–10 min.

2.1.2. Stimuli
We constructed eight language conditions by control-

ling patterns of frequency distribution (uniform vs. Zipfian)
and the numbers of word types contained in lexicon (6, 12,
24, 36 types). Within each language condition, we created
16 language variants with different phonetic material. This
diversity was necessary to ensure that results did not in-
clude spurious phonological effects.

Words were created by randomly concatenating two,
three, or four syllables (word lengths were evenly distrib-
uted across each language). Stimuli were synthesized using
MBROLA (Dutoit, Pagel, Pierret, Bataille, & Van Der Vrec-
ken, 1996) at a constant pitch of 100 Hz with 225 ms vow-
els and 25 ms consonants. Each syllable was used in one
word only.4 Sentences were generated by randomly concat-
enating words into strings of four words. The total number

of word tokens was 300 and the number of sentences was
75 in all the languages. The token frequencies of words in
each language were either distributed uniformly according
to the total type frequency (e.g., 50 tokens each for a lan-
guage with six word types) or given a Zipfian distribution
such that frequency was inversely proportional to rank
(f / 1/r). Frequency distributions for each language are
shown in Fig. 2.

For the test phase, a set of length-matched ‘‘part-
words’’ were created for each word by concatenating the
first syllable of the word with the last syllables of another
word. These part-words were used as distractors; they ap-
peared in the training input but with lower frequency than
the target words, as in Frank et al. (2010). The larger the
number of types in the language, the smaller the number
of times any given distractor appeared on average, because
a larger number of types created fewer opportunities for
any given set of words to occur adjacent to one another.
Nevertheless, distractor frequencies were matched be-
tween Zipfian and uniform conditions: Averaged across
all test items, distractor frequencies were approximately
8, 2, .5, and .2 for the 6, 12, 24, and 36 type conditions.
(The effects of distractor frequency on performance for
individual test trials is considered in regression analyses
below.)

2.1.3. Procedure
Before the training phase began, participants were in-

structed to listen to a simple English word and type it in
to ensure that sound was being played properly on the par-
ticipants’ system. Participants then moved to the training
phase, where they were instructed to listen to a made-up
language, which they would later be tested on. To ensure
compliance with the listening task for the duration of the
training phase, subjects needed to click a button marked
‘‘next’’ after each sentence to proceed through the training
phase. In the test phase of the 2AFC condition, participants
heard 24 pairs of words, consisting of a target word and a
length-matched ‘‘part-word.’’ After listening to each word
once, they clicked a button to indicate which one sounded
more familiar (or ‘‘word-like’’) in the language they had
learned.

2.2. Results and discussion

Fig. 3 illustrates accuracy of responses in the four types
of languages in each of the uniform and Zipfian distribu-
tion conditions. There was not a strong numerical effect
of the distribution condition. Replicating previous results
(Frank et al., 2010), performance decreased as the number
of types increased, but participants performed slightly
above chance even in the most difficult 36-type condition;
this is a surprising and intriguing result given that each
word in the uniform condition was heard on average only
eight times.

We conducted a mixed-effects logistic regression analy-
sis (Breslow & Clayton, 1993; Gelman & Hill, 2006; Jaeger,
2008), fit to the entire dataset to avoid issues of multiple
independent comparisons. This model attempted to pre-
dict the odds of correct answers on individual trials; we
then used comparison between models to find the appro-

4 To ensure the discriminability of the synthesized syllables used, we
conducted an online survey in which nine participants listened to syllable
pairs and judged if they were the same or different. The paired syllables
were either identical or formed a minimal pair, contrasting either in their
vowel or their consonant (e.g., /po/ vs. /pa/ and /pa/ vs. /ba/). The minimal
pairs were distinguished correctly in 93% of trials for consonants and 99% of
trials for vowels, leading to d0 values of 3.92 and 5.20 respectively. While a
few consonant pairs were confusable though still distinguished at levels
above chance (e.g., /v/ vs. /b/, /p/ vs. /f/), the large majority of the syllables
used in Experiments 1 and 2 were discriminable from each other with near
perfect accuracy.
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priate predictors. Our first model included effects of distri-
bution and number of types (as well as a random effect of
participant; since all manipulations were between-sub-
jects, this was our only random effect). We found no effect
of distribution (p = .65) but a highly significant effect of
number of types (b = !.020, p < .0001). Further exploration
revealed that better model fit was given by the logarithm
of number of types as a predictor rather than raw number
of types (v2 = 9.21, p < .0001). Thus, the log number of
types was the only significant predictor of performance
in this model.

In our second set of models, we introduced as additional
trial-level predictors the log frequency of the target and
distractors for each trial (calculated from the input corpus

for each language; again, the logarithms were better pre-
dictors). In this model, we found that once these factors
were added, there was no gain in model fit from the overall
log number of types in the language (v2(1) = .23, p = .63).
Instead, there were two main effects: a positive coefficient
on log token frequencies (the more times a word is heard,
the better performance gets: b = .35, p < .0001), and a neg-
ative coefficient on log distractor tokens (the more times a
distractor is heard in the corpus, the worse performance
gets: b = !.50, p < .01). We also found a positive interaction
of the two (bad distractors are worse if the target is low
frequency: b = .14, p < .01). The general relationship be-
tween performance and log token frequency is plotted in
Fig. 4. In this final model, there was still no effect of

0
40

80
12

0

0
40

80
12

0

0
40

80
12

0

0
40

80
12

0

6 types

0
40

80
12

0

12 types

0
40

80
12

0

24 types
0

40
80

12
0

36 types

0
40

80
12

0

Fig. 2. Word frequencies in uniform (top) and Zipfian (bottom) conditions of Experiment 1. The horizontal axis shows distinct word types, and the vertical
axis shows the frequency of each of these types.

Uniform Distribution Zipfian Distribution

0.0

0.2

0.4

0.6

0.8

1.0

6 12 24 36 6 12 24 36
Number of Word Types

Pr
op

or
tio

n 
C

or
re

ct

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Average proportion of correct responses by number of word types in the uniform and Zipfian distribution conditions. Dots represent individual
participants and are jittered to avoid overplotting. Solid lines give best fit for performance as a function of log number of types, with the gray boundary
representing the standard error. Dashed line represents chance (50%).

C. Kurumada et al. / Cognition 127 (2013) 439–453 443



Author's personal copy

distribution conditions (Zipfian b = .09, p = .29), though the
Zipfian condition showed a slight numerical trend towards
higher performance.

To summarize, participants represented target words
equally well after being exposed to languages with very dif-
ferent frequency distributions and contingency statistics.
We found robust effects of the log unigram frequency of tar-
gets and distractors, independent of distribution condition.
The lack of disadvantage in a Zipfian condition suggests that
the mechanism underlying adults’ word segmentation must
involve more than mere estimation of forward TPs; this
claim is tested in depth in the simulation section below.

In this initial study, we did not find any bootstrapping
effects for the Zipfian languages (as predicted by the
chunking models): Once target and distractor frequency
were accounted for, there were no further effects of condi-
tion on participants’ performance. One possible reason for
this lack of an effect is that the current 2AFC task tests
word knowledge in isolation, and might not gauge the con-
textual support available in a sentential context. In addi-
tion, the design of the experiment prevented us from
analyzing the contextual history of individual words (be-
cause by the end of training, all words had quite similar
contextual histories). In the following section, we report
experimental results based on a new paradigm, which al-
lows us to explore the potential effects of contextual sup-
port more precisely.

3. Experiment 2

If learners accumulate evidence for words as they ap-
pear in the input, they should detect some words earlier
than others based on token input frequencies. When pre-
sented in a sentential context, these early representations
may serve as anchors facilitating discovery of words that
share boundaries with them, producing either contextual
facilitation (better segmentation in known contexts) or
contextual bootstrapping (better segmentation of words

that have previously appeared in known contexts). Exper-
iment 2 provides a further test of the hypothesis that Zip-
fian distributions could promote these kinds of effects, at
least when performance is measured on items presented
in context (Bortfeld et al., 2005; Cunillera et al., 2010; Da-
han & Brent, 1999; Lew-Williams et al., 2011).

To conduct this test, we used an orthographic segmen-
tation paradigm developed by Frank, Arnon, Tily, and Gold-
water (2010) and Frank et al. (2013). A two-alternative
forced choice compares a particular target and its paired
distractor; this method might hence be relatively insensi-
tive to contextual effects. In contrast, the orthographic seg-
mentation paradigm—where participants click on a
transcript of a sentence to indicate where they think word
boundaries fall—might be more sensitive to the kind of
contextual effects we were looking for.

In our version of this orthographic segmentation task,
participants were exposed to a language following either
a Zipfian or a uniform distribution. After hearing each sen-
tence, they were asked to give explicit judgements as to
where they would place word boundaries. The experiment
consists of 50 sentences (trials) and no discrete test phase.
Instead, each sentence gave us information about partici-
pants’ knowledge of the language, allowing us to recon-
struct the time course of learning for each participant
and condition.

3.1. Methods

3.1.1. Participants
We posted 281 separate HITs on Mechanical Turk. We

received 250 complete HITs from distinct individuals. Par-
ticipants were paid $0.50 for participation. Because of the
increased complexity of the task, we applied an incentive
payment system to ensure participants’ attention: they
were told they would receive an additional $1.00 if they
scored in the top quartile.

3.1.2. Stimuli
The process of generating stimuli was nearly identical

to the 8 conditions in Experiment 1. Four word type condi-
tions (with 6, 9, 12, and 24 word types, respectively) were
generated and crossed with the two distribution patterns
(uniform or Zipfian). These languages were used to gener-
ate 200 word tokens in 50 sentences. We chose to reduce
the maximum number of word types (24 vs. 36) due to
the complexity of the task and more limited overall
amount of input. Participants were randomly assigned to
one of the eight conditions. Each sentence contained three
to five words; we varied the number of words in sentences
so that the number of word boundaries in any given sen-
tence was not predictable.

3.1.3. Procedure
After a synthesized sentence was played, participants

were asked to indicate word boundaries in a corresponding
transcription presented visually. Each syllable was sepa-
rated by a line (signifying a word boundary) that could
be toggled on or off. The participants were given one prac-
tice trial on an English sentence presented in the same for-
mat and prevented from continuing until they segment it
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correctly. All the syllables were spelled with one letter rep-
resenting a consonant followed by one or two letters
depending on the length of the vowel (e.g., ka, ta,pee). Par-
ticipants could play back each sentence as many times as
needed. Average time spent on the 50 trials was 16 min.

3.2. Results and discussion

We were interested in participants’ performance on
individual words based on the words’ frequencies and con-
texts. We thus created a binary dependent variable for suc-
cess in segmenting each word: 1 if the word was
segmented correctly (with a boundary at each edge and
no boundaries at any internal syllable breaks) and 0 other-
wise. Average segmentation results across trials are shown
in Fig. 5.5

Participants who were exposed to Zipfian distributions
generally achieved higher performance, especially in lan-

guages with more word types. In languages with fewer
word types, participants in the uniform condition started
out learning more slowly but caught up to those in the Zip-
fian condition; in the languages with more word types,
participants in the uniform condition never caught up.

To capture this pattern of performance, we created a
mixed logistic model to predict word-by-word segmenta-
tion accuracy (Table 1). We included random by-partici-
pant intercepts and by-participant slopes for log token
frequency of words, assuming that participants differ in
how much input they need to segment words correctly.
As in Experiment 1, we found a strong main effect of log in-
put frequency of the target word (b = 0.46, p < 10!10).6 The
length of the target word (b = !1.35, p < 10!15) and the
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Fig. 5. Proportion of correctly segmented word tokens per sentence plotted for each condition of Experiment 2. Points represent mean F-score across
individual participants for each trial; closed dots for participants from the uniform conditions and open triangles from the Zipfian conditions. Lines show a
non-linear fit by a local smoother (loess, span = .75).

5 The measure we used here is known as ‘‘token recall’’ in the literature
on evaluating segmentation models (Brent, 1999; Goldwater et al., 2009).
Other work in this area has used precision and recall for tokens, as well as
precision and recall measured for individual boundary judgments. We
computed each of these measures, as well as the harmonic mean of
precision and recall for each (F-score). The overall picture for all of the
measures was almost identical to Fig. 5. We focus on token recall, a
measure that is related to comprehension (since the overall number of
tokens correctly segmented will determine how many of them can be
recognized and interpreted).

6 We initially included two more factors to control additional support
from sentence boundaries (Monaghan & Christiansen, 2010). These were:
(1) a binary variable of seeing a target word at an edge of the current
sentence or not (current boundary status) and (2) a continuous variable of
the frequency of seeing a target word (type) at sentence boundaries in the
past sentences (past boundary frequency). The model suggested that both
of these factors were significant predictors of correct segmentation of a
target word (current boundary status (b = 0.72, p < 10!16) and past
boundary frequency (b = 0.39, p < 10!12)). However, the past boundary
frequency was strongly colinear with general type frequency of the word:
Words with high general frequency occur at sentence boundaries more
often than other words. Therefore, we did not include this predictor in the
other models we created. In the models we report below, we excluded all
words that appeared at sentence boundaries in order to control the effect of
current boundary status and better estimate effects of adjacency.
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length of the sentence (b = !1.0, p < 10!7) were significant
predictors of correct segmentation of the target word. (The
large effect of word length is likely due to the fact that long-
er words contain more syllables and hence more opportuni-
ties for incorrectly placed boundaries.)

We used this model to investigate a contextual facilita-
tion effect: that high familiarity with particular items
would improve segmentation accuracy for their neighbor-
ing words. To test this hypothesis, we included the cumu-
lative log frequency—number of times heard in the input
prior to the target word—of the words on the both sides
of the target words as predictors. Note that this predictor
is only available for words that fall in the middle positions
of sentences, hence the dataset used in this and following
models is a subset of the full dataset. Coefficients for ef-
fects shared across both models were comparable. The
cumulative frequency of the previous word was a signifi-
cant predictor (b = 0.15, p < 10!4): the more frequently
the left neighbor word had been heard so far, the more
likely it was for the target word to be segmented correctly.
The absence of a similar effect on the right-hand side
(p = .8) may be due to the directionality of the segmenta-
tion process. Participants in our task might be placing
boundaries moving from the left edge (the onset of a sen-
tence) to the right edge, making the information from the
preceding word more important.

We next used the model to test for a contextual boot-
strapping effect: that having been seen in supportive con-
texts (e.g., next to high-frequency items) leads to better
segmentation in future exposures. To do so, we con-
structed another model which included a predictor that
measured the degree of support given by the previous con-
texts in which the target word had been seen. This predic-
tor was composed of the average log frequency of all the
words that had appeared on either side of the target word
prior to the current exposure. The frequency-based predic-
tors we used to investigate the two contextual effects—
contextual facilitation and bootstrapping—are highly col-
linear and cannot be tested in a single model (Gelman &
Hill, 2006; Jaeger, 2008). For this test, we thus removed
the contextual facilitation predictors.

If being flanked by high-frequency neighbors can im-
prove recognition, words that have neighbors with higher

average frequency should be segmented more correctly
than those which have a history of adjacency with low-fre-
quency words. As with the contextual facilitation predic-
tors, our model showed such an effect for the words on
the left of the target word (b = 0.18, p = .014) but not for
the words on the right (b = !.03, p = .72). Both contextual
facilitation and contextual bootstrapping models dramati-
cally increased goodness-of-fit compared to models that
did not include contextual predictors (ps < 10!16), but the
contextual facilitation model had overall lower Akaike’s
Information Criterion values (AIC: 13,331 vs. 13,344
respectively, with the same number of parameters in each
model), suggesting that it fit the data somewhat better.

Can performance in our orthographic segmentation task
be compared to performance in a purely auditory task? The
left–right asymmetry we observed in the contextual facilita-
tion effects suggests that participants primarily placed
boundaries in an incremental manner, moving from left to
right. Followup analyses of the time-course of participants’
segmentation decisions confirmed this: Participants rarely
backtracked to undo decisions they had already made. This
pattern indicates that behavior in the orthographic task had
some similarities to auditory information processing: Both
follow a sequential strategy. Nevertheless, the addition of
visual information might have made segmentation easier
by alleviating memory load (Frank & Gibson, 2011) or add-
ing redundant information in a second modality.

To investigate whether changes in modality affected
performance, we reran one condition of Experiment 2
(nine word types) without audio input. We found an over-
all similar pattern of results with a comparable level of
performance to the results reported above. These data
are consistent with the hypothesis that the phenomena
we observed are similar across modalities (though they
suggest that some visual statistical learning might have oc-
curred (Fiser & Aslin, 2002; Kirkham, Slemmer, & Johnson,
2002)). Even in this ‘‘no audio’’ condition, however, it is
impossible to know how much of the participants’ word
representations were formed based on visual input alone,
since participants were likely reading sentences silently.
Thus, despite its visual component, we believe that our
current task elicits an approximation of adult learners’ on-
line segmentation behavior.

Table 1
Mixed logit model parameters for Experiment 2, showing contextual facilitation predictors (see text for more details).

Name Variance Std. dev. Correlation

Random effects
Participant ID (intercept) 0.54 0.73

Log token freq (target) 0.45 0.67 !0.191

Coefficient Std. err. z-Value p-Value

Fixed effects
Intercept 1.48 0.50 2.83 <0.005⁄⁄

Distribution (Zipf) 0.55 0.37 1.50 0.13
Word types (6, 9, 12, 24) 0.01 0.02 0.59 0.56
Distribution "word types <0.01 0.02 !0.39 0.69
Log token frequency (target) 0.19 0.10 1.91 0.05
Log token frequency (previous) 0.15 0.04 4.04 5.31 " 10!5⁄⁄⁄

Log token frequency (following) !0.01 0.04 !0.25 0.80
Word length (syllables) !1.34 0.10 !13.75 <2 " 10!16⁄⁄⁄

Sentence length (syllables) !0.95 0.20 !4.63 3.49 " 10!7⁄⁄⁄

Log frequency seen at boundary 0.33 0.08 4.11 3.84 " 10!5⁄⁄⁄
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To summarize, in Experiment 2 we found highly reliable
effects of contextual facilitation and contextual bootstrap-
ping. As in Experiment 1, however, there was no overall ef-
fect of distribution condition (uniform vs. Zipfian) beyond
frequency effects at the token level. We were not able to esti-
mate contextual facilitation and bootstrapping effects
jointly, but our analyses suggest that facilitation effects
were considerably stronger than bootstrapping effects
(probably because bootstrapping requires facilitation as
well as retention of the facilitated word forms). This result
may explain the lack of bootstrapping effects in Experiment
1: there was no opportunity during test for facilitation ef-
fects, and weaker bootstrapping effects may not have been
visible in the somewhat less sensitive two-alternative
forced-choice paradigm.

4. Model simulations

In this section, we test the qualitative predictions made
in the Introduction: that chunking models predict an
advantage for Zipfian distributions, while transitional
probability (TP) models predict a disadvantage. A transi-
tion-finding model implies a lexicon as a consequence of
segmenting at low-probability transitions. A skewed word
frequency distribution would result in sparse probability
matrices, which are expected to give rise to a problem
for strictly TP-based approaches. A lexical model, on the
other hand, maintains a collection of words and word-like
chunks in the form of memory representations, cue
weights or probabilities. Frequent word types in a Zipfian
distribution are expected to be learned and retained more
easily, providing leverage in recognition of otherwise unfa-
miliar words in the context.

To test these predictions on a real dataset, we compare
the fit of four different computational models to human
data from Experiment 2. We chose as our models a forward
transition-finding model (Saffran, Newport et al., 1996)
and three lexical models: a memory-based model (PAR-
SER; Perruchet & Vinter, 1998); a recognition-based con-
nectionist model (TRACX; French et al., 2011); and a new
online implementation of a probabilistic segmentation
model (Goldwater et al., 2009) using an online ‘‘particle fil-
ter’’ inference algorithm (Börschinger & Johnson, 2011). For
brevity we refer to this last model as the Particle Filter
model. Properties of these models are summarized in Ta-
ble 2, and details of the models are given in Appendix A.

Due to the fundamental differences in the assumptions
and details of these models, the reported metrics of model
fit are not meant as a formal model comparison. Rather,
we present the best parameter setting for each model, pro-
viding a basic estimate of the fit to human data. Since our
goal here is to show that a range of chunking models show

a Zipfian advantage, rather than to decide between models,
we do not provide an exposition of the differences between
formalisms, though see Frank et al. (2010) for more details
on some of the models.

One important feature of the models compared here is
that all are ‘‘online’’ models: that is, they pass through the
data sequentially, without storing the sentences in memory
(as would be the case in a ‘‘batch’’ model).7 This feature was
necessary because our task is fundamentally online: perfor-
mance on particular trials depended only on what has been
learned in the previous sentences. To evaluate segmentation
performance on individual trials, we made minor changes to
several of the models. Details of these modifications as well
as model parameters, their significance, and the parameter
ranges tested are summarized in Appendix A.

4.1. Simulations

4.1.1. Materials
The stimuli from Experiment 2 were translated into a

standardized format in which each character corresponded
to a single syllable (Frank et al., 2010). To ensure conver-
gence of estimated model performance, each model was
run over 128 input files of 50 sentences, 16 in each of
two distribution conditions (uniform and Zipfian) crossed
with four word type conditions (6, 9, 12, and 24 types).

4.1.2. Evaluation
Scores were aggregated over the 16 input files in each

condition " type combination, such that every model run
yielded 400 data points: a token F-score for each of 50 sen-
tences in each of eight condition-type combinations. For
every parameter setting in each model, we calculated root
mean square error (RMSE) and Pearson’s product-moment
correlation coefficient (Pearson’s r) between these 400
datapoints and average human performance. These two
metrics provide different information regarding model
fit: RMSE is a metric of the absolute fit based on differences
between values predicted by a model and the values actu-
ally observed, while Pearson’s r characterizes the degree of
correlation between the learning curves but does not pun-
ish differences in the absolute performance. These two
measures together allow us to assess how well a particular
model could generate the human token F-scores observed
in Experiment 2.

Table 2
Properties of the four models used in our simulations. Parameters column indicates the parameters that were varied rather than the total possible parameters
of the model.

Model Key reference Chunking Class Params.

Forward TP Saffran, Newport et al. (1996) " Simple statistical 1
PARSER Perruchet and Vinter (1998) U Memory-based 2
TRACX French et al. (2011) U Connectionist 4
Particle filter Börschinger and Johnson (2011) U Bayesian 1

7 TRACX required multiple passes through the input corpus (multiple
training epochs) to produce segmentation decisions, though on the final
run segmentation decisions were produced continuously. For more details
on simulations, see Appendices A and B.
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4.2. Comparison results

Fig. 6 shows the performance of each model as well as
the human performance observed in Experiment 2. We
show learning curves with the best RMSE for ease of inter-
pretation; those curves with the highest correlation values
(presented in Appendix B) often had radically different
scales than the human data.

As hypothesized, the transition-finding model demon-
strated better performance on input with a uniform word
frequency distribution in all the four conditions (6, 9, 12,
and 24 word types).8 On the other hand, two of the chunk-
ing models—TRACX and the Particle Filter—performed better
in the Zipfian conditions, and successfully captured the over-
all characteristics of the human data. Table 3 shows the re-
sults of comparison (the lowest RMSE and the highest

Pearson’s r) between the models and the human data.
TRACX and the Particle Filter fit human performance better
than the other two models.

Further exploration revealed that PARSER’s perfor-
mance was modulated by a free parameter: its forgetting
rate (the rate at which lexical chunks decayed from its
memory store). It performed better based on a Zipfian dis-
tribution (patterning with the other chunking models)
when items in memory decayed quickly. On the other
hand, when chunks remained in memory longer, PARSER
showed higher performance in the uniform condition. A
Zipfian frequency distribution provided more leverage
when the model required more exposure to maintain a
word chunk, or when there were more words to be learned.
Together with recent findings in implementing resource
limitation in modeling human segmentation performance
(Frank et al., 2010), our results from PARSER suggest that
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Table 3
Comparison between models and human data for Experiment 2.

Model RMSE Pearson’s r Zipfian advantage?

Transitional probability 0.24 0.50
PARSER 0.28 0.66 ?
TRACX 0.21 0.79 U

Particle filter 0.12 0.65 U

8 We further explored a Bayesian variation of the TP model that uses
smoothing of transition counts to approximate memory limitations (Frank
et al., 2010). When the amount of smoothing was relatively small, results
showed an advantage in uniform conditions; when more smoothing was
applied, performance was higher in Zipfian conditions. This pattern was
congruent with the results of the PARSER model: increasing memory
limitations led to a Zipfian advantage. Nevertheless, those parameter
settings which produced a Zipfian advantage also led to very poor overall fit
to the data (high RMSE and high variability in performance across
conditions).
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we can better understand the significance of word fre-
quency distributions by taking into account some notions
of memory or resource limitation.

To summarize: Under the evaluation scheme we used,
the chunking models segmented a Zipfian language better
than a uniform language, successfully simulating the pat-
terns observed in the human data. The pattern was re-
versed for the transition-finding model—it segmented a
uniform language better than a Zipfian language. This re-
sult suggests that sensitivity to statistically coherent
chunks plays an important role in segmenting a language
with a skewed frequency distribution.

5. General discussion

We presented two artificial language word segmenta-
tion experiments as well as simulations with four models,
comparing performance in word recognition and word seg-
mentation in languages with uniform and Zipfian fre-
quency distributions. Both experiments showed that the
major determinant of performance was the frequency with
which words were heard. Once lexical frequency was ac-
counted for, we observed no remaining effect of distribu-
tion condition, suggesting that the sparsity of Zipfian
languages posed no problem for learners. In the simula-
tions, we found that the best fitting models were largely
driven by consistent exposure to frequent chunks (Frank
et al., 2010; Frank et al., 2013; Perruchet & Vinter, 1998),
supporting a ‘‘chunking’’ view of statistical learning.

When we examined word segmentation in context, we
saw that performance for Zipfian languages was consider-
ably higher. This result highlighted a simple fact about Zip-
fian languages: in these languages, listeners are repeatedly
exposed to a small number of high-frequency words, giv-
ing them many chances to learn these words and use them
in segmenting incoming sentences. When the words were
uniformly distributed, learners could not reliably segment
sentences until they became sufficiently familiar with the
entire lexicon. The highly skewed distribution of word fre-
quencies thus supports an efficient entry into the task of
word segmentation.

Furthermore, our results suggest that established famil-
iarity with high-frequency words helps learners segment
adjacent material. We distinguished two effects stemming
from this observation: contextual facilitation effects—in
which adjacent high-frequency words help learners seg-
ment words in the moment—and contextual bootstrapping
effects—in which a history of these supportive contexts
leads to longer-term learning. In our dataset, we saw reli-
able evidence for both types of effects, explaining the over-
all advantage that learners had in the Zipfian conditions
(although bootstrapping effects were smaller).

Our results are thus compatible with previous work on
contextual facilitation and bootstrapping (Bortfeld et al.,
2005; Brent & Siskind, 2001; Cunillera et al., 2010; Lew-Wil-
liams et al., 2011). In fact, they may suggest a way to recon-
cile some conflicting developmental results. Since
contextual facilitation and bootstrapping effects are both
small relative to direct frequency effects, these effects may
have been easier to observe in the Bortfeld et al. (2005)
study, which used very high-frequency names, rather than

the Hollich et al. (2001) study, which used familiar but rela-
tively lower frequency common nouns. Nevertheless, more
research with infants and children is necessary to under-
stand whether contextual effects play a large role in chil-
dren’s early word segmentation performance.

The contrast between the two paradigms we used—
word recognition judgments and explicit orthographic
word segmentation—highlights an important assumption
of previous work on segmentation: that the goal of word
learning is to attain a large vocabulary of word types. In
fact, language learners are likely pursuing multiple simul-
taneous goals. One is to build a vocabulary of word types;
the other is to interpret word tokens as they are heard
(Frank, Goodman, & Tenenbaum, 2009). The higher perfor-
mance we observed in the Zipfian conditions of Experi-
ment 2 was a consequence of this distinction. While
Zipfian contexts did not have any particular effects on seg-
mentation accuracy per se, the fact that new material in
these conditions tended to contain many high-frequency
tokens means that segmentation was considerably more
accurate. Thus, Zipfian languages support word segmenta-
tion in context, allowing learners to begin parsing and
interpreting the language they hear much more quickly
than they would otherwise be able to.
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Appendix A. Model and simulation details

A.1. Forward transitional probability

We implemented an online version of a simple forward
transition probability (TP) model (Aslin et al., 1998; Saf-
fran, Aslin et al., 1996; Saffran, Newport et al., 1996). We
calculated conditional probability as:

pðajbÞ ¼
cða; bÞP
y2V cða; yÞ ð1Þ

where a and b are unigram syllable counts, c(ab) is a count
of the bigram ab, and V is the set of all bigrams. Sentence
boundaries were not treated as a pseudo-syllable; unigram
and bigram counts were calculated only within sentences.

In previous research, transitional probabilities have
generally been computed over all the data in a given cor-
pus. In contrast, our model updated unigram counts, bi-
gram counts, and transitional probabilities at the end of
each sentence. This was done to simulate a continuous
time course of learning for comparison with the human
learners. The TP model had only one free parameter, the
threshold under which word boundaries were imposed.
We systematically tested threshold increments of .025 in
the range of 0–1, placing boundaries at all transitions un-
der the threshold.
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A.2. PARSER

The PARSER model (Perruchet & Vinter, 1998) is orga-
nized around a dynamic collection of chunks in a working
memory. It explicitly represents the proposed lexicon in
this buffer, maintaining a discrete weight for each item
rather than a set of weights between sub-lexical chunks.
PARSER serially scans the input stream of syllables and
either chunks adjacent syllables according to the items
maintained in the working memory, or chunks them ran-
domly if they do not yet exist. Each chunk kept in the
working memory decays at a constant rate, similar items
interfere with each other, and chunks whose weights fall
under a certain threshold are removed from the collection.
We used the word-by-word chunking decisions, as deter-
mined by the weight of items in the working memory to
simulate segmentation decisions. As correct lexical items
accrued weight through exposure and incorrect ones re-
ceived only limited or no support, more of the tokens in
the input stream are correctly recognized as trials progress.
In the current simulation, the weights are updated after
every word to model human segmentation decisions.

The PARSER model as described has six free parameters,
of which we varied two: the amount each item’s weight
decreases with the presentation of new material (.005–.1
in increments of .005) and the amount each item deceases
as a result of interference between items (.004, .005, or
.006). The other four parameters were left unchanged:
the maximum number of primitives chunks in an item
(3), the threshold of perception for an item (1), the gain
in weight for reactivation (.5), and the initial weight of
new words (1).

A.3. TRACX

TRACX is an implicit chunk recognition model based on
a connectionist account of sequence learning (French et al.,
2011). The learning algorithm relies on the recognition of
previously encountered subsequences (chunks) in the in-
put using an autoassociative neural network. Network er-
ror of a sequence is inversely proportional to the number
of times those chunks have been seen together previously
in the input. As the model proceeds through a string, units
that comprise a sequence of syllables recognized as
sequential are moved to a single representation in a hidden
layer, and association is then assessed between that multi-
syllable item in the hidden layer and the next syllable. In
this way, TRACX maintains a distributed representation
of a probable lexicon encoded as weighted associations be-
tween syllables and syllable sequences. The codebase was
adapted to output the parse, word-by-word, as guided by
the network weights at the end of the last training epoch.

The model as described has four parameters: the num-
ber of repeated exposures to the data (epochs), the thresh-
old for what qualifies as a chunk (the error criterion), the
adjustment rate of the neural network (the learning rate),
and the proportion of instances with which backpropaga-
tion takes place (the reinforcement threshold). For the cur-
rent experiment, epochs were varied in increments of one
from four to eight, criteria between .2 and .6 in increments
of .1, learning rates from .02 to .06 in increments of .01, and

the reinforcement threshold between .15 and .35 in incre-
ments of .05.

A.4. Bayesian lexical model

We chose a unigram model as an example of an ideal
observer model that uses Bayesian statistics to assess the
probability of different segmentation hypotheses. Börsch-
inger and Johnson (2011) re-implemented a popular
Bayesian word segmentation model (Goldwater et al.,
2009) to use a particle filter (Doucet, Godsill, & Andrieu,
2000) rather than Gibbs sampling to estimate the posterior
distribution over proposed segmentation hypotheses. As in
Goldwater et al. (2009), the model defines a generative
model for words and segments and uses Bayesian infer-
ence to establish the parameters of that generative
model for the optimal segmentation of a text. A Dirichlet
process governs the distribution of proposed lexicons,
enforcing a distribution that favors smaller lexicons of
shorter words.

The use of a particle filter in the inference stage allows
for single-pass incremental processing of the input that
yields a time course of learning comparable to the human
timecourses in Experiment 2. The particle filter sequen-
tially approximates a target posterior distribution with a
number of weighted point samples (particles), updating
each particle and its weight in light of each succeeding
observation. A high number of poorly performing particles
prompts a resampling from existing particles, with a high-
er probability of sampling from the better performing par-
ticles. This model has one free parameter in the current
simulations, the number of particles used in the inference,
in this case 20–8. The concentration parameter for the
Dirichlet process, a hyperparameter of the model, was
set to the number of types for each input (6, 9, 12,
and 24).

Appendix B. Additional simulation results

As illustrated in Figs. 6 and 7, the TP model showed a
preference for input with a uniform word frequency distri-
bution, and an overall higher level of performance than
that of human subjects. The parameter setting with the
best correlation, a TP threshold of .3, showed an advantage
for the uniform condition across languages of all sizes.
While the model reached peak performance less rapidly
in both conditions as the number of types increased, scores
were considerably higher than human performance on the
same task. The parameter setting with the best RMSE, at a
threshold of .95, displayed a similar uniform advantage
across language sizes, along with very high F-scores. Devi-
ating further from the observed human data, performance
increased as the number of types increased.

As shown in Table 3, the Bayesian lexical model had the
lowest RMSE, the second highest correlation, and demon-
strated higher performance on Zipfian-distributed input
across languages of various sizes. In both the parameter
setting with the best correlation (32 particles) and the best
RMSE (four particles), the model showed slightly higher
performance than human subjects, and was especially
resilient to the increase in the number of types. Through-
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out the parameter space, the Bayesian lexical model
learned better from input with a Zipfian word frequency
distribution than from input with a uniform word fre-
quency distribution.

TRACX had the highest correlation and the second low-
est RMSE. The best parameter setting, at a learning rate of
.2, five epochs, a criterion of .6, and a reinforcement thresh-
old of .45, showed a preference for Zipfian data in three of
four conditions. It also demonstrated a faster decay in per-
formance in the uniform condition as the number of types
in the language increased, a pattern qualitatively consis-
tent with, but quantitatively more pronounced than, the
human data. In the 24 type performance is at floor in the
uniform condition while people achieve F-scores in the
.25–.3 range. The parameter setting with the lowest RMSE,
at a learning rate of .02, eight epochs, a criterion of .5, and a
reinforcement threshold of .35, shows a similar gradual de-
crease in segmentation performance on the Zipfian data as
the number of types increases, but a rapid drop in perfor-
mance in the uniform condition.

PARSER grouped either with the forward transitional
probability model or with the other lexical models depend-

ing on the forgetting rate, the rate at which the weights of
items decayed in the model’s working memory as new
materials were observed. At the parameter settings with
the highest correlation with human data, the model per-
formed better on the input with the Zipfian word fre-
quency distribution in the 9, 12, and 24 type languages.
This highest Pearson’s r came at a forget rate of .06 and
an interference rate of .004. The highest correlation came
at absolute scores much lower (from 0 to .3) than human
performance (from .2 to about .8), however. Learning
curves from the Zipfian data showed a decrease in perfor-
mance in the last 10 trials was not characteristic of the hu-
man learners. Performance was at floor for both the 12 and
24 type uniform conditions, presumably because the high
forget rate removed items from the working memory be-
fore they accrued any weight. High frequency items in
the Zipfian condition, on the other hand, were recognized
and maintained in the working memory. The lowest RMSE
parameters were a forget rate of .005 and an interference
rate of .004. With these parameters, PARSER performed
better on the input data with a uniform word frequency
distribution, but the model in the Zipfian condition showed
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only a marginal increase in performance as a result of
learning, while the model in the uniform condition learned
to segment better than human subjects in the 9, 12 and 24
type languages.
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