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Abstract

How do learners discover patterns in the sequential structure
of their language? Infants and adults have surprising abilities
to learn structure in simple artificial languages, but the mecha-
nisms are unknown. Here we introduce a rule-based Bayesian
model incorporating two principles: minimal generalization
and representational parsimony. We apply our model to tasks
in artificial language learning and inflectional morphology and
show that it fits behavioral results from infants and adults and
learns inflectional rules from natural data.
Keywords: Language acquisition; generalization; artificial
language learning; inflectional morphology; Bayesian model-
ing.

Introduction
How do learners discover patterns in the sequential struc-
ture of their language? Experimental work on the unsuper-
vised learning of sequential structure has suggested that in-
fants and adults have access to flexible and powerful learning
mechanisms which may be involved in language acquisition
(Gomez, 2002; Marcus et al., 1999). However, both the par-
ticular mechanisms involved in these tasks and the aspects of
acquisition to which they apply are at present unknown.

In our current work we attempt to address these questions
by creating a computational model which embodies two prin-
ciples suggested by this experimental literature: minimal gen-
eralization and representational parsimony. We show that
these principles apply not only to artificial language tasks, but
that they may also have applications to learning inflectional
morphology, an important task facing language learners.

We first describe our model and how it embodies a trade-
off between these two principles within a hypothesis space
expressive enough to capture many different types of rules.
We next show how our model can be applied to artificial lan-
guage experiments on learning identity-rules (Gerken, 2006;
Marcus et al., 1999) and non-adjacent dependencies (Gomez,
2002). We then present an extension of our model to the
case of inflectional morphology. Finally, we show prelimi-
nary data indicating that our model can be applied directly to
learning inflectional rules in natural language.

The representations and learning mechanisms involved in
the acquisition of inflectional morphology have been hotly
debated in the literature on language acquisition. Two ba-
sic positions have been proposed: a single process of ana-
logical learning (Rumelhart & McClelland, 1986) or a dual
system consisting of both abstract rules and associative pro-
cesses (Pinker, 1991). While this debate has been taken as
representative of a wider debate over the format of mental
representation, it has nevertheless tended to confound a num-
ber of independent computational issues.

Proponents of analogical or associative theories have em-
phasized the parsimony and neural plausibility of this type
of proposal. In contrast, dual-route theorists have focused
on representational or expressive limitations of the analogical
approach. There are two dissociable issues captured by this
debate: (1) the number of routes for morphology learning and
(2) the algorithmic form and expressive power of those routes.
For instance, recent work by Albright & Hayes (2003) com-
pared an analogical model with a rule-based model and found
that the greater expressivity of the rule-based model allowed
for tighter generalization and better fit to human experimental
data in a novel-word inflection wug task, despite the fact that
both models had only one route for representation.

Under a more general definition of a rule as a systematic
regularity, rules can be both broad (as in the regular rule for
the past tense in English orthography, +ed, and narrow (as
in the past tense rule for the verb go: go→ went. Within an
expressive enough hypothesis space, a rule could even be for-
mulated for analogical inferences like using inflections from
stems with high similarity.1 If we assume that the hypothe-
sis space of rules is broad enough to capture many different
types of regularities, the problem of how to find the right rule
within this hypothesis space becomes more important.

Our current work is not directly concerned with the exact
form of the representations used by human learners. Instead,
we assume that learners are attempting to make generaliza-
tions from limited data within some hypothesis space and fo-
cus on the principles by which they find the best generaliza-
tions in that space. Following Albright & Hayes (2003), our
hypothesis space consists of sets of explicit rules, both for
their ease of interpretation and because Albright and Hayes’
data show that this kind of representation provides a better
fit to human generalizations. However, we take rules to be
a representational convenience which we adopt at the high-
est of Marr’s (1982) levels of analysis: the level of compu-
tational theory. Thus, we focus here not on testing different
kinds of representations, but instead on making explicit and
individually testing the principles of generalization by which
particular rules are learned.

Model Design
We formalize the idea of a rule as a set of restrictions on
the features of a string. For instance, Marcus et al. (1999)
presented infants with strings like wo f e f e (three-syllable
strings where the last two syllables were the same). In our

1For instance, though the hypothesis space of our current model
does not allow similarity-based rules (e.g., ”strings within some edit
distance of X”), it would be relatively simple to add such rules.
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Figure 1: A schematic representation of the generative pro-
cess for our model. This process defines a distribution over
sets of strings by showing how they could be generated by
a set of underlying rules. In practice, we invert this process
through Bayesian inference, calculating the posterior proba-
bility that an observed set of strings was generated by a partic-
ular set of rules. Circles represent variables, arrows represent
dependencies, and rectangles (plates) group sets of elements
that are repeated.

models of artificial language tasks, we define features over
both individual elements (syllables, phonemes, or words de-
pending on the experiment) and pairs of elements (as in Ta-
ble 1). For individual elements, our features simply denote
whether an element has a particular value (e.g., the first sylla-
ble is wo). For pairs of elements, we restricted our hypothesis
space to contain a single binary feature: the identity relation-
ship in which two elements have exactly the same value re-
gardless of what it is. By picking combinations of features
we can generate more complex rules like AAx (the first two
elements are the same and the third is x)—the rule used by
Gerken (2006).2 The conjunction of a set of features makes
a rule; a rule is true of a particular string only if the string
contains all the features included in that rule.

The goal of our model is to find one or a small number of
rules which tightly describe the available data. Imagine the
set of strings abc abd abe. One description of these strings
might be “a followed by any two letters.” However, intu-
itively it seems as though the less general rule, “ab followed
by any one letter” is more likely. Our model formalizes this
principle of minimal generalization, known as the “size prin-
ciple” (Tenenbaum & Griffiths, 2001) by assigning probabili-
ties to rules depending on how tightly they fit an observed set
of strings.

Consider a second set of strings: abc abd abe mnp mnq
mnr. Again, one description of this set of strings might be

2In this type of hypothesis space it is possible to define inconsis-
tent rules (e.g.,“first element is wo, second element is f e, and first
and second elements are the same”). We deal with this by excluding
inconsistent hypotheses from consideration and renormalizing the
probability of the remaining rules in the hypothesis space.

F1 F2 F3 F12 F13 F23 Translation
wo f e f e * * * only wo f e f e
* f e f e * * * ends f e f e

wo * f e * * * begins wo, ends f e
wo * * * * = wo BB
* * * * * = ABB
* * * * * * any string

Table 1: Some of the rules consistent with the string
wo f e f e, from Marcus et al. (1999). F1, e.g., refers to
those features which describe the first element of the string,
while F23, e.g., refers to features that relate the second and
third element of the string. A * denotes no restriction on a
particular feature.

“any set of three letters.” But there is a less general descrip-
tion: “ab followed by any letter,” or “mn followed by any let-
ter.” In this case, the better description seems to contain two
specific rules rather than one more general rule. Taking this
principle to its logical conclusion, however, produces a very
unparsimonious set of rules: “abc,” “abd,” “abe,” “mnp,”
“mnq,” or “mnr.” Though this description is very specific,
it includes too many rules and fails to identify the generaliza-
tion linking subsets of the strings together. We formalize this
intuition by including a prior on the number of rules used to
describe a set of strings. This prior is known as the Chinese
Restaurant Process (CRP) (Rasmussen, 2000).

The Bayesian framework we use here gives us a principled
method for trading off minimal generalization (which prefers
more specific rules, even if there are more of them) and repre-
sentational parsimony (which prefers fewer rules, even if they
are more general).

Model details
A generative process (such as the one in Figure 1) is a se-
quence of steps which jointly define a probability distribu-
tion. By defining our model generatively we can use Bayesian
inference to calculate the posterior probability that a set of
unobserved states—in our case, a set of rules and clusters—
generated an observed product: a set of strings.

Following the arrows in Figure 1, in order to generate a
string, we first decide what cluster c it belongs to (each cluster
has one rule associated with it) by giving it a cluster index z.
If this is the first string we have generated, then the string
must go in its own cluster; if we have generated some strings
already, we can decide whether the new string will fall in one
of these pre-existing clusters or go in a cluster of its own. This
process, the CRP, is governed by a concentration parameter α

which controls how likely a new string is to go in its own
cluster.

Once we have decided on which cluster the string belongs
to, we then either use the rule ψ already assigned to that clus-
ter or—in the case of a new cluster—randomly pick a rule to
go with it out of the space of rules Ψ. We then pick a string s



uniformly from the set of strings that are consistent with ψ.
Formally, the joint probability of a full corpus of strings S

and a partition Z of those strings into rule clusters is given by

P(S,Z|α) = P(S|Z) ·P(Z|α) (1)

The probability P(Z|α) of a partition is given by the CRP
with concentration parameter α. The probability of the corpus
given the cluster assignments is the product of independent
terms for each string (corresponding to the plate over strings
in Figure 1):

P(S|Z) = ∏
i

P(si|zi) (2)

Because strings in each cluster c are generated by a particular
rule ψc for that cluster, we group the terms in Equation 2
into a product over clusters and then a separate product over
strings in that cluster:

P(S|Z) = ∏
c

∏
i:zi=c

∑
ψc

P(si|ψc) ·P(ψc) (3)

However, because ψc is not known, in computing the proba-
bility of observing the strings associated with cluster c we in-
tegrate the predictions of all rules congruent with the strings
in the cluster, weighted by their prior P(ψc). For simplicity
we take this prior to be uniform, equal to the inverse of the
number of possible rules in our description language. The
likelihood function for a rule is then given by

P(si|ψc) =

{
1
|ψc| if si consistent with ψc

0 otherwise
(4)

For each string, this probability is simply the probability of
a string being chosen uniformly from the set of strings con-
sistent with the rule for that cluster (the size principle). Put
another way, the size of a rule |ψ| is given by the rule’s ex-
tension: the number of ways the symbols—syllables, letters,
or phonemes—of a language can be combined that are con-
gruent with the rule. Since larger rules will be less likely to
generate a particular example, our model favors minimal gen-
eralization by giving highest probability to the smallest rule
that could have generated the observed data. The CRP prior
in turn ensures representational parsimony by giving higher
probability to hypotheses with fewer different rules, whatever
their size.

Because we pose our model as a generative process, we
are able to invert that process using Bayes’ rule and compute
the posterior probability of a hypothesis (a partition of strings
into clusters and rules to go with those clusters) given a set of
strings. In practice, we use a Gibbs sampler to search for the
best partition of strings into clusters (MacKay, 2003).

All simulations were conducted using types rather than to-
kens. Accordingly, only one example of a particular string
was included in the training set for our model, even if strings
were presented multiple times in the original experiment.
Since we used the size principle to determine the likelihood

sample rule # of clusters α = .9 .09 .009
ABA 1 -75.70 -73.47 -73.21

le B le 4 -77.84 -82.51 -89.15
A di A 4 -83.38 -88.05 -94.70
le di le 16 -112.59 -144.89 -179.16

Table 2: Log posterior probability of different hypotheses
(shown with an example of the maximum likelihood rule for
one of the clusters for that hypothesis along with the total
number of clusters in that hypothesis) under different CRP
parameter values. While the absolute probability of the dif-
ferent clusterings changes relative to the value of α, the single
cluster/rule hypothesis was always preferred.

of a particular rule, we made this choice because using to-
kens rather than types would make a rule less probable with
each repetition of the same string (intuitively, an undesirable
consequence). One possible extension of our model to deal
with this issue would include another step in the generative
process which generated tokens from types (Goldwater et al.,
2006).

Experiment 1: Learning Identity Rules
In our first set of simulations we ran our model on the stimuli
from two sets of experiments on artificial rule learning with
infants. The first were those of Marcus et al. (1999), who
familiarized infants to rules of the forms ABB, AAB, and ABA
and tested them on their ability to discriminate strings of this
form from strings of an alternate form (e.g., ABB vs. AAB as
in the example above). The Marcus et al. stimuli were com-
posed of a vocabulary of eight syllables, of which 4 were des-
ignated as A elements and 4 were designated as B elements,
creating a total set of 16 tokens.

The second set of stimuli came from Gerken (2006), who
tested infants on sets of four strings drawn either from an AAB
rule or a narrower AAx rule (the first two elements the same
followed by x). Gerken found that even though both sets of
strings were consistent with the broader AAB rule, infants
showed evidence of learning the AAx rule when all the evi-
dence was consistent with the narrower generalization.

For each of the three Marcus et al. (1999) rules and for
the two Gerken (2006) rules, our model assigned the high-
est posterior probability to the hypothesis that all the strings
were generated by the same rule; the rule with the highest
likelihood for this cluster was the rule posited by the re-
searchers (e.g., ABA). Although the likelihood of a partition
of the strings into several more specific rules, e.g. “le B le,”
“wi B wi,” “ ji B ji,” or “de B de” was higher, the prior was
considerably lower, leading to a consistent preference for the
single cluster hypothesis (Table 2).

Experiment 2: Using Variability to Generalize
Does increasing type variability strengthen generalizations?
Gomez (2002) presented learners with three-word strings
containing an invariant dependency between the first and third
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Figure 2: Results from our simulations of experiments by
Gomez (2002). Top: log posterior probability of clusterings
with either 1 or 3 rules (corresponding either to a learn noth-
ing rule or a correct generalization) at three different values
for α, the CRP parameter. Bottom: model performance at test
compared with human data reported by Gomez (2002). Error
bars show standard error of the mean.

elements (e.g., generated by the rule aXb, where the identity
of the X element varied). They manipulated how many ele-
ments could appear in the X position of the string (data shown
in Figure 2) and found that participants were able to learn the
specific rules of the language only when the variability of the
X element was greater than 12 elements, concluding that vari-
ability in adjacent dependencies might lead to greater atten-
tion to non-adjacent dependencies.

We tested whether our principle of representational parsi-
mony (embodied in the CRP prior on the number of rules
the model learns) could be responsible for the results they
observed. We ran our model on the same set of strings and
found that the model showed the same qualitative tradeoff
as participants, switching between parsimony of representa-
tion and minimal generalization by learning only a single rule
(“accept any string”) for |X | = 2, but quickly moving to the
correct generalization (learning three rules, “a b,” “c d,” or
“e f ”) for variability greater than 2.

Why does the model prefer to generalize at such a low rate
of variability compared with the human participants? One
reason might be the memory limitations of human learners:
perhaps human learners can only appreciate some of the ev-
idence for a particular inference at any given time. In other
work, we have used a memory decay function over tokens to
simulate this kind of limited use of evidence. Given the sim-
plicity of the current experiment, however, we chose to simu-
late the limited use of evidence by lowering the α parameter
on the CRP until the model strongly dispreferred hypotheses
with more rules. We then modeled the forced-choice task of

human participants by calculating the probability of choosing
a correct string over an incorrect string via a Luce choice rule
(Luce, 1963) comparing the posterior probability of correct
and incorrect strings under the model (Figure 2). While the
level of variability at which the model was able to discrim-
inate strings correctly varied widely with different values of
α, the qualitative trend remained constant: a tradeoff between
preferring representational parsimony (prior) with less evi-
dence and minimal generalization (likelihood) as the amount
of available evidence increased.

Experiment 3: Artificial Inflectional
Morphology

In order to test the performance of the model in fitting a more
complex range of human data (including production data as
opposed to forced choice accuracies), we conducted a simple
experiment with adults using artificial morphological stimuli.

Experimental paradigm
Participants Twenty-one participants from the MIT com-
munity participated for payment.

Materials and Methods Participants were told they were
learning about the language of a remote island and were given
sets of 20 index cards (each of which had on it a noun from
the island’s language paired with its plural form). They were
told that they could spread out the cards and rearrange them
any way they wanted in order to learn the language best. They
were then given a sheet with fifteen novel nouns and asked to
fill in the plural form for each noun and give a confidence
rating. Participants in all three conditions received the same
test materials.

Participants saw index cards from one of three conditions,
which we called multiple rules, reduplicative rules, and rule
plus exceptions. In all conditions, rules were suffix rules
which required adding material to the end of a stem; no rules
conflicted in their application—in both the training and the
test sets, only one rule applied to each stem. Stems were
multi-syllabic, pronounceable non-words that did not sound
recognizably English-like.

In the multiple rules condition, we defined five rules, each
of which was attested in four examples. Each rule applied
only to stems with a particular ending: for instance, +ene /

i j (“add ene if the word ends with t”) was a rule that applied
to the words gimi j, vari j, ipi j, and haspadi j.

In the reduplicative rules condition, there were two rules,
each with 10 examples: +em and reduplicate last syllable
/ a (“repeat the last syllable of words with an a in the
second-to-last position,” as in the stem-inflected form pair
vigutap→ vigutaptap).

The final condition was the rules-plus-exceptions condi-
tion, in which participants saw 17 examples of one suffix
rule, two examples of another, and then a third irregular form,
meant to simulate a system like the English plural or past
tense where there is an overwhelmingly frequent rule with
only a relatively small number of exceptions.



Figure 3: For each condition of Experiment 3, we show the clusters found by our model (left side) and the clusters in participants
responses (right side). Each inflection (e.g., +em) was given a different grayscale value. For the human participants, the 15
rows in each plot represent the items in the generalization test and the 7 columns represent the 7 participants in each condition.

Results Average pairwise similarity between participants in
the multiple rules condition was 81.9%; in the reduplicative
rules condition, 83.4%; and in the rules plus exceptions con-
dition, 86.8% (Figure 3). These pairwise similarities differed
significantly from chance (computed via permutation of par-
ticipants’ responses): all ps < .0001, all ts > 18.

Inflectional Model
To adapt our model to inflectional data, we added a step to
the generative process. Each cluster was assigned both a rule
schema (what we referred to as a rule in the initial model: a
set of features) and an inflectional rule (a procedure for mod-
ifying a stem—what we called a string in the initial model—
to create an inflected form). The rule schemata in this model
were defined over phonemes and positions in the stem (count-
ing backwards from the end of the stem). For instance, pos-
sible features could be the last phoneme is e or the second to
last phoneme is t.

Inflectional rules were defined as a set of deterministic
transformations to be performed on each stem. For instance,
if the inflectional rule were +ed / t, the full rule (schema
and inflectional rule) would be consistent if all stems in the
cluster ended with t and all inflected forms were suffixed by
ed. In practice we included four possible operations for in-
flection, which could be combined as necessary to create the
proper inflected form: adding a suffix, reduplicating a suffix,
substituting a vowel, and substituting an entire word. Because
the space of rules in this and the next experiment was larger
than the space in the first two experiments (due to the greater
length of strings), we calculated only the highest-probability
schema and inflectional rule for each cluster.3

3It was not possible to calculate the number of phonetically legal
words congruent with a particular schema (as we did in the artificial
language examples). To compute the likelihood of a string given a
rule (Equation 4), we approximated the size of a schema by count-

Fit to data

To test the fit of our model to the data we collected, we ran the
model on each training set. For each of the three conditions,
the clustering with the maximum posterior probability was
the one we intended; the maximum likelihood rule (schema
and inflectional rule) for each cluster similarly matched our
intended design. To model generalization to novel test items
in each condition, we chose the maximum a posteriori hy-
pothesis in the model and used it to generate the maximum a
posteriori inflected form for each stem (Figure 3).

The sets of rules preferred by the inflectional models pro-
duced generalizations that were highly similar to those of our
human participants (and performance was robust to manipu-
lation of the CRP parameter α). In the multiple rules condi-
tion, the model produced the same form as the human partici-
pants in 93 of 105 cases (88.6%); in the reduplicative rules
condition, 98 of 105 cases (93.3%); and in the rules plus
exceptions condition, 95 of 105 cases (90.5%). In each of
the three experiments, three participants produced exactly the
same pattern of judgments as the model while the other four
differed by no more than 4 of 15 judgments. These results
suggest that the model effectively recovered the same struc-
ture from the training data as the human participants.

Experiment 4: Natural Morphology
In order to test the generality of the inflectional form of
our model, we applied the version described in the previ-
ous section to the problem of learning the English past tense.
We carried out preliminary simulations using a phonetically-

ing the number of words in the training data that were congruent
with that schema. Provided that the training data is a representative
sample of the overall corpus, the relative values of |ψ| should be
comparable using this estimate.



Frequency Rule Example stem (past)
63 +d / p appear (appeared)
23 +@d / t want (wanted)
12 +d show (showed)
11 +@d / d need (needed)
9 +t / k look (looked)
9 +t / s increase (increased)
8 +t / p stop (stopped)
5 +t / S watch (watched)
4 Ø / t put (put)
3 o→ u / o know (knew)

. . .
1 go→ wEnt go (went)
1 gEt→ gat get (got)

Table 3: A sample of the most frequent rules found by the
inflectional model (Experiment 4) when run on the 200 most
frequent English present-past verb form pairings.

transcribed corpus of present-past verb form pairs.4

We trained the model on the 200 most frequent past-tense
phonological forms in English. Results for the most fre-
quently applied rules are shown in Table 3. Since our model
was only able to restrict particular elements of a string to one
value (rather than a class of values, e.g., unvoiced phonemes),
it was not able to capture the specific selectional regularities
of the English past. Despite this, when we tested it on its gen-
eralization to the other forms in the corpus, it successfully
inferred the correct form 88.5% of the time (1753 of 1981
forms correct). Despite the limits on the hypothesis space for
rule schemata, the rules that the model learned on this small
training set were similar to those that might be written in a
phonology text (Table 3). In future work we hope to further
increase the expressiveness of our hypothesis space in order
to evaluate the generalization performance of the model.

General Discussion
On the basis of previous experimental work, we proposed two
principles for sequential generalization in language: minimal
generalization and representational parsimony. We formal-
ized these principles in a Bayesian model. In Experiment 1,
we showed that the principle of minimal generalization al-
lowed our model to fit data on infant rule learning. In Ex-
periment 2, we showed that increasing evidence via variabil-
ity gave greater support for generalization, suggesting a bias
for representational parsimony. In Experiment 3, we further
tested these principles by altering our model to handle inflec-
tional tasks and comparing this new model with human per-
formance on three simple artificial inflection systems. We
found a tight correspondence between the performance of the
model and the productions of human participants. Finally, in
Experiment 4, we ran our model on a subset of English past

4Corpus data were obtained from the website of Bruce Hayes
(http://www.linguistics.ucla.edu/people/hayes/learning/).

tense forms and found that the model acquired linguistically
plausible rules and generalized them with relative accuracy.
Taken together, these data suggest that the general principles
of minimal generalization and representational parsimony—
combined within an expressive hypothesis space—may be
sufficient to account for a wide range of phenomena in se-
quential linguistic generalization.
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