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Abstract
What makes a good teacher, and how should we structure
classrooms to promote effective teaching? This paper inves-
tigates the idea that a good teacher is a good communicator,
using models of optimal pragmatic communication to explore
the dynamics of classroom learning. The proposed model de-
scribes teaching as choosing examples of a concept to present
to students in order to maximize their information gain. Under
this model, the key challenge for the teacher is communicat-
ing to a heterogenous audience. A number of results emerge
naturally, including decreases in performance with increases
in class size and increases in performance based on grouping
(“tracking”) students by abilities.
Keywords: Teaching; education; communication; pragmatics;
Bayesian modeling.

Introduction
Many questions about classroom education are both foun-
dational and highly controversial. For example, do larger
classes produce worse learning outcomes for students (Glass
& Smith, 1979; Slavin, 1989)? Does separating students by
ability produce better learning (Slavin, 1987)? Is it better
to spend class time testing students’ initial performance in
order to customize curriculum, or is it better to standardize
materials (Fuchs & Fuchs, 1986)? While there is a vast em-
pirical literature that attempts to answer these questions (and
many others), relatively little extant work focuses on provid-
ing quantitative theory that would provide a priori predictions
about these questions. The goal of the current work is to take
a first step in this direction.

My guiding inspiration comes from considering what qual-
ities make a good teacher. Intuitively, a good teacher is
a good communicator, choosing explanations and examples
that allow students to learn effectively. The model I describe
here explores this parallel between teaching and communi-
cation, examining how variability in both the size and the
knowledgeability of teachers’ audience affects communica-
tion strategies.

This paper presents ideal observer analysis, similar to those
used in perception, where models provide a baseline from
which to assess human performance (Geisler, 2003; Frank,
2013). A model of classroom education could provide a tool
for reasoning about the causal factors involved in student out-
comes. Further down the road, to the extent its predictions
match human behavior they could be a guide for future re-
search or even—in combination with a model of the cost of
interventions—to promote effective decision-making. And to
the extent that its predictions mismatch data, this mismatch
would be a prompt for revision of the model.

The parallel between teaching and communication
emerges in recent formal work using probabilistic models.

Shafto and Goodman (2008) described a model of teaching
a single student, in which teacher and learner reason recur-
sively about one another’s intentions. In that model, the
teacher’s goal is to choose an example or set of examples to
allow a student to acquire a concept (say, a rectangle in the co-
ordinate plane). The student then reasons about the examples
that the teacher has chosen, given that the teacher has chosen
them with the student in mind (e.g. in order to maximize what
is learned). This recursive form—teacher chooses examples
to maximizes student learning, student considers teacher’s
choice—leads to much stronger inferences than those possi-
ble in scenarios where the teacher does not reason about the
student and vice versa (Shafto, Goodman, & Frank, 2012).

Though some models of this type employ very deep
recursion—learners reasoning about speakers about learners
until asymptotic convergence (Jäger, 2010)—greater depth
does not necessarily provide a good fit to human behavior.
In a recent model of pragmatic communication, Frank and
Goodman (2012) developed a version of this framework that
described speakers as choosing their words to convey maxi-
mal information to a naive listener (one who interprets words
literally). This two-level framing nevertheless led to infer-
ences beyond the literal. The spirit of that framework guides
the current work. Teachers are modeled as speakers who con-
sider the beliefs of a group of students when choosing what
example to present, but students are not assumed to reason
about the teachers’ motivation (though adding such recursion
could be of interest in future investigations).

The fundamental unit of the analysis here is a teaching
game. A teacher attempts to guide a group of students to
discover an extremely simple concept. For the concept in this
paper, we choose the weight of a biased coin (the parameter
of a Bernoulli distribution). Though a single coin weight is
an extremely simple case study, many interesting dynamics
become clearer because of this simplicity. In a more complex
scenario, the dynamics of optimal teaching can be arbitrarily
complex, and patterns are much harder to discern. I return to
this issue in the general discussion.

The challenge for teachers is that they can only convey the
target concept by the use of examples. What examples should
a teacher choose in order to convey a particular coin weight?
If students are perfectly unbiased, teachers’ examples should
follow the overall distribution of the coin. So for a fair coin
they should provide e.g., 0,1,0,1. But what if they know that
the students believe the coin to be biased in favor of heads
(say .75), while it is actually biased somewhat in favor of tails
(.25). Intuitively, the optimal choice in that situation should
be a sequence with more heads than the actual proportion, in



order to counteract the students’ bias.
The proposed model formalizes this intuition using a prob-

abilistic framework in which students are described as op-
timal learners with some prior beliefs. The teacher in turn
makes decisions based on knowledge about these learners.
The initial Model section presents computational details, and
the Simulations section provides some initial results using
the model. Without modification or fitting, the model repro-
duces a range of intuitive phenomena including the influence
of class size and heterogeneity on student performance, and
the results of grouping students into classes by ability (“track-
ing”).

Model
In a teaching game, I assume that a teacher T attempts to pro-
vide information to students S = s1...sn. The teacher conveys
information by choosing examples E = e1...em to illustrate
an underlying concept C, based on some estimate of the stu-
dents’ prior knowledge and abilities Ŝ = ŝ1...ŝm. Learners in
turn attempt to recover C with maximal fidelity. The teacher’s
payoff is determined via evaluation of the change in the learn-
ers’ estimates based on the chosen example.

I consider a very simple form of this sort of game in which
the teacher chooses a single example. In addition, I assume
that the teacher has perfect knowledge of students’ initial and
final state for purposes of planning her moves. These assump-
tions can of course be relaxed in future work.

I also begin by considering the teaching of a very simple
concept: the weight on a coin (a single Bernoulli variable).
The exact weight on this coin is unknown, but both teacher
and student maintain a distribution of beliefs about the coin
weight. The teacher wishes to modify the student’s belief
distribution so that it converges to her own. In order to do
so, there is exactly one choice the teacher can make, which is
whether the example e should be tails, notated as 0 to avoid
confusion, or heads, notated as 1. Based on this example,
the students rationally update their beliefs, and their new be-
liefs are evaluated with respect to their initial state to deter-
mine whether they have learned. The following sections give
details for students, how they are evaluated, and then how
teachers use this evaluation to compute their optimal move.1

Students
Students are modeled as Bayesian (optimal) estimators of the
target Bernoulli parameter, using a conjugate Beta-Bernoulli
distribution. This model is very convenient: The form of the
prior distribution is Beta(α,β), and the form of the posterior
can be written Beta(α+ x,β+ y) where x and y represent the
number of heads (1s) and tails (0s) observed in the data. In
this sense, if x and y are the counts of observed data, then α

and β can be referred to as pseudo-counts.
This formulation also gives us a way to model both the stu-

dents’ abilities and their prior knowledge about the situation.

1All code available at http://github.com/mcfrank/teaching.
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Figure 1: Two examples of Beta distributions—representing
individual students’ posterior distributions over a target
concept—with different priors and patterns of evidence.
Black curves show the probability distribution with a given
prior (left column) and after observing a single tail or head
(middle and right columns). Red lines show the posterior
mean.

Consider the example distributions shown in Figure 1. Sym-
metric priors of α = β = 2 lead to a bias that the C is around
.5, while α = 1,β = 3 leads to a bias towards lower values of
C.

Under this formulation, the prior controls both the speed
at which a student will learn and their overall bias. For ex-
ample, as α and β both go towards 0, the student’s estimate
converges to a maximum-likelihood estimate based on the ob-
served data alone. In contrast, as α and β both get larger, the
student makes less and less use of the data and is more and
more reliant on the shape of the prior distribution. The rela-
tive weights of α and β control the student’s mean estimate—
greater pseudo-counts on one or the other will lead to greater
bias to believe that the correct parameter is lower or higher.

As described below, given our evaluation metric, students’
learning rate is less important than their bias. For this reason,
we use an alternative parameterization of the Beta-Bernoulli
distribution, in terms of shape µ and scale ν, where

µ = α/(α+β) (1)
ν = α+β (2)

In this parameterization, µ directly controls the mean of the
distribution, while ν captures the strength of the belief. For
example, in Figure 1, µ = .5 for the top distribution and .25
for the bottom, while ν = 4 for both.

Evaluation
We compute the information gain for each student due to the
teacher’s chosen example. We notate the Beta distribution
of the teacher’s beliefs as BT = Beta(αT ,βT ), and similarly
the student’s Beta distributions before and after seeing the
teacher’s example as BS and BS+e respectively. This allows
us to compute the Kullback-Leibler divergence (Cover &



Thomas, 2012) between teacher and student, both before and
after seeing example e. The KL divergence gives a measure
of the distance between the true distribution BT and the ap-
proximations BS and BS+e. The difference between these two
divergences gives the number of bits of information gained
due to the example, which we refer to as “information gain”:2

IG(e) = DKL(BT ||BS)−DKL(BT ||BS+e) (3)

where the divergence measure is computed in closed form for
e.g., BT and BS, as

DKL(BT ||BS) = log(
B(αS,βS)

B(αT ,βT )
)+

(αT −αS)ψ(αT )+

(βT −βS)ψ(βT )+

(αT −αS +βT −βS)ψ(αT +βT ).

(4)

where ψ denotes the digamma function and B(a,b) denotes
the beta function. Information gain will be positive when
BS+e is closer to the target distribution than BS. For purposes
of comparison, we always consider information gain on a per-
student basis.

An interesting property of information gain defined in this
way is that it is insensitive to the scale ν of the students’ prior
estimate and sensitive only to the shape µ. If Equation 4 is
substituted into Equation 3, and we assume that e = 1, Equa-
tion 3 reduces to3

IG(e) = log(
αS +βS

αS
)+ψ(αT )+ψ(αT +βT ). (5)

Only the first of these terms depends at all on the student’s
knowledge. That term (log(αS+βS

αS
)) depends on the ratio of

αS to βS but not their absolute values. Thus, only the rela-
tive size of α and β—captured via the µ parameter—matters.
(The same result holds for e = 0). Intuitively, this result im-
plies that in the current setup a well-chosen example can al-
ways teach you more, and the amount it can teach you is re-
lated to the distance between your best estimate and that of
the teacher. In addition, practically speaking, this result is
convenient because we need only vary the µ parameter for in-
dividual students in our simulations and can hold ν constant.

Teacher
The teacher is assumed to choose between possible examples
or sequences of examples in E. In the current simple case,
E = {H,T}. This choice is made so as to maximize the av-
erage information gain across students. Thus, expected infor-
mation gain is the information gain due to the best example
that they could show:

2I use this label for convenience, though note that this measure is
not equivalent to mutual information, an information-theoretic quan-
tity that is also occasionally referred to as “information gain.”

3Full derivation is available in the github repository linked above.

E[IG] = argmax
e

IG(e). (6)

Note that this formulation assumes that teachers have perfect
knowledge of the students both before and after an example
and can mentally simulate the effects of a particular example
on student knowledge so as to pick the appropriate one.

Simulations
The following sections report simulations using the model
above, beginning with results for a single student (providing
initial model validation). The next set of simulations show
expected information gain for students based on the variance
across students in a classroom and based on the size of the
classroom. The last two simulations consider the function of
“tracking” (grouping students by their initial knowledge) and
the problems that can arise for a mis-tracked student.

Apart from the initial simulation, for which results are
computed analytically, all others use 1000 simulated class-
rooms per parameter setting, with students’ µ values ran-
domly generated from a Beta distribution for each simulation.

Teaching a Single Student
In the first simulation, I examine the teacher’s optimal strat-
egy (and information gain) for a single student. I generated
students with initial biases µ = {.1, .3, .5, .7, .9}, and varied
the teacher’s target concept C smoothly. For each combina-
tion of µ and C, I assumed that the teacher chose the better of
the two possible examples (H or T ).

Results are shown in Figure 2. Following intuitions, infor-
mation gain is greatest when the teacher’s concept is extreme,
and when the student’s initial expectation is mismatched to
that concept. In addition, the teacher’s optimal strategy
(shown by the red or green ribbon) changes depending on the
student’s initial expectation. Consider the top panel: When
the student starts out believing C = .1, the teacher should
almost always select T as his example, though the relative
information gain can be low if the disparity between the stu-
dent’s belief and the teacher’s is not large (e.g. if C = .2).
Note also that information gain can be very slightly negative
in the case that the student’s belief exactly matches that of the
teacher—given that match, any single example will move the
student’s belief further from that of the teacher.

Student Variability
The next set of simulations combines several students in a
single classroom. In these and all subsequent simulations,
I generated students randomly via a symmetric Beta prior
distribution on student µ values. With α,β both < 1, this
produces classrooms with students who have extremal biases
(e.g. close to 0 and 1); with α,β > 1, this produces class-
rooms of students whose biases tend to be clustered closer
and closer to .5. For each classroom, I assume that the teacher
calculates her expected information gain for her two possible
strategies and then uses the better of the two.



0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0.1
0.3

0.5
0.7

0.9
0.0 0.5 1.0

Target concept

In
fo

rm
at

io
n 

ga
in

 (n
at

s)

S
tudent’s initial estim

ate

Figure 2: Student’s expected information gain, plotted by tar-
get concept C, for students with a range of different initial
values of student’s initial bias µ (panels). Green highlighting
shows ranges in which the teacher’s best move is providing
T (0), while red highlighting shows the range where H (1)
produces greater gain.

Greater student uniformity produced greater information
gain, for all target concepts. Figure 3 shows this relationship.
The effect was greatest for the smallest values, and informa-
tion gain was very low when students’ expectations tended to
be extremal but the target value was closer to the middle of
the range.

For µ priors < 1 information gain can actually be nega-
tive; this result comes about when student expectations are
extremal but the target value is moderate. In these cases, a
single piece of evidence will either reinforce students’ biases
(in the case that their guess is already close to 1 and they see
an H) or fail to counteract their biases (in the case that their
guess is close to 0 and they again see a H). The average of
these two cases is negative.

This simulation suggests that students in a more heteroge-
nous classroom will learn less, on average, because the
teacher will be less able to tailor her examples to the students’
knowledge. In contrast, in a more homogeneous classroom,
the teacher can better provide an example that leads to learn-
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Figure 3: Information gain, plotted by the prior on students’
uniformity (a symmetric Beta distribution from which each
student’s µ parameter is chosen). Target values for C are
shown in different colors. Error bars (in some cases invisi-
ble) show 95% confidence intervals.

ing for all students.

Classroom Size
The previous simulation set showed that, all else being equal,
heterogeneity of students has a very negative effect on teach-
ers’ ability to chose strategies that lead to optimal informa-
tion gain: More heterogeneous students provide the teacher
less of a chance to customize the teaching environment to
each student’s knowledge state. An important corollary of
this finding is that class size is an important factor influenc-
ing heterogeneity. Larger classes should be, on average, more
heterogeneous, and should hence provide fewer opportunities
for teachers to customize their message in ways that produce
greater information gain.

I simulated classrooms from 1 – 100 students, across a
range of target values for C and found precisely this ef-
fect: Larger classrooms showed less average information gain
(Figure 4). The effect was substantially smaller in magnitude
than the heterogeneity effects in the preceding simulations—
class size acts only indirectly on variability.

In addition, the class size effect varied substantially with
C. Here is the intuition behind this result: If C = .9, nearly
all students—regardless of how many there are—will gain in-
formation if the teacher presents a 1. In contrast, if C = .5,
on average about half of the students in each class begin with
a value of µ < .5, and the other half begin believing µ > .5.
But if the class average is actually .5 then there is no teach-
ing opportunity. It is only if the class average is (say) .6 that
the teacher can pull it back down towards .5 by presenting a
0. As class size increases, student means tend to cancel each
other out and on average no individual example will teach the
class anything.

Overall, this simulation suggests that class size exerts a
negative effect on performance, especially for tricky concepts
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Figure 4: Average information gain plotted by number of stu-
dents in a class. Target values for C are shown in different
colors. Error bars show 95% confidence intervals.

where students’ initial starting points vary meaningfully.

Tracking Students by Ability
One way to mitigate class size effects is by reducing class-
room heterogeneity. This reduction is sometimes achieved
via what is known as “tracking” or ability-grouping—
assigning students to classrooms systematically by knowl-
edge or ability, rather than assigning them randomly. The
next simulations examine the effects of tracking on classroom
performance.

I created two parallel sets of classrooms. In each, a popula-
tion of students was generated with uniform bias values. The
untracked simulations were identical to the class-size simu-
lations above; the tracked simulations were identical except
that students were sorted and distributed into available classes
based on their µ value. For example, if there were two classes,
the first would receive the students with values of µ below the
median.

Tracking resulted in greater average information gain for
students. Results for an example value of C are shown in
Figure 5. While the untracked classes were not differentiated
from one another and showed a small class-size effect (left
panel), the tracked classes showed greater information gain
as the number of tracks increased. Interestingly, the tracking
advantage decreased with each additional group—too many
tracks created diminishing returns.There was no class-size ef-
fect for the simulations with 3 and 4 tracking groups: Per-
formance remained stable as size increased, presumably be-
cause the classes were homogeneous enough that additional
students did not make an appreciable difference to outcomes.

Class size was a negative predictor of student learning be-
cause of the relationship between classroom heterogeneity
and student learning. Larger classes tend to be more hetero-
geneous and hence to have lower performance, but tracking
students to more homogeneous classrooms reduced this ef-
fect.
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Figure 6: Information gain for the average student (red) and
a student whose parameters have been mismeasured (blue),
plotted by the error in the measurement. Simulation data are
shown for C = .75 with four tracked classes of 24 students
each. Error bars show 95% confidence intervals.

Mis-tracking for an Individual Student
What happens if you are tracked to the wrong classroom? The
last simulation explores the measurement of individual stu-
dents’ competence in the tracking scenario described above.

The base scenario for these simulations is a group of stu-
dents 96 tracked into four classes (as shown in Figure 5). I
altered this simulation by assuming that the teacher’s knowl-
edge of one student’s µ value was perturbed by a known num-
ber of pseudocounts, varying from 0–20. The result of this
perturbation was that this student was likely to be assigned
to a mismatched classroom. Average information gain for
the mis-tracked student declined substantially with even rela-
tively small perturbations (Figure 6).

This simulation suggests that, even within the restricted
world of the model, mismeasurement or misassignment of a
student has substantial consequences for learning.

Discussion
Based on the idea that a good teacher is a good communica-
tor, this paper proposed a model of classroom teaching. The
model describes teachers as choosing optimal messages to al-
ter student’s beliefs about a target concept, where optimal
messages are those that maximize the average information
gain across students in the classroom. Simulations show that
several results follow naturally from this construal of teach-
ing. First, classroom heterogeneity substantially limits the
teacher’s ability to choose appropriate examples to change
students’ beliefs. Because of this fact about the model and
the idiosyncrasies of small samples of students, smaller class-
rooms tend to lead to better learning. In addition, “tracking”
students to classrooms to reduce variability led to substantial
increases in information gain (though these depended on ac-
curate classification of students). The model presented here
thus provides a first attempt at a generative framework for the
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Figure 5: Information gain plotted by the number of students in a class. C is set to .75 for illustrative purposes. Colors show
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random; in the right (tracked) panel, students were sorted by their prior µ value. Error bars show 95% confidence intervals.

dynamics of classroom education.
In the current model, the teaching game—presenting coin

flips to estimate the coin’s weight—is exceedingly simple;
this simplicity is both a strength and a limitation of the cur-
rent work. By using the conjugate model chosen here, many
parts of choosing an optimal strategy became computation-
ally tractable; in addition, this particular model allowed an
analytic reduction in the parameter space, vastly facilitating
the project of characterizing its dynamics. Nevertheless, a
necessary direction for future work is to test the generality
of the findings reported here with another learning model; a
clear candidate would be the concept-learning tasks studied
by Shafto and Goodman (2008).

More broadly, the current model incorporates a large num-
ber of optimality assumptions, prominently including 1) op-
timal strategy choice by teachers, 2) optimal teacher knowl-
edge of students, and 3) optimal learning by those students.
Relaxing any one of these would lead to interesting future in-
vestigations, of 1) heuristic strategy choice, 2) consequences
of noisy teacher assessments of student knowledge, or 3)
strategies for coping with a wider range of students (respec-
tively). Such extensions might reveal connections with other
areas of educational interest (e.g. formative student assess-
ment; Torrance & Pryor, 1998).

More broadly, the suggestion of the current work is that
models of pragmatic communication may have a place in un-
derstanding classroom teaching. The challenge for such mod-
els in the future will be enriching them until they are able to
make direct contact with empirical data.
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